Linear Algebra for the Young Mathematician-Errata

Most of these errata were found by Bruce Gould and Joel Brewster Lewis and his students, whom the author sincerely thanks.

Page 19, line 12: Delete the word homogeneous

Page 20, line 3: $2 a_{22}^{\prime} x_{2}$ should be $a_{22}^{\prime} x_{2}$

Page 20, line -10: $\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ should be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$

Page 21, line 21: $\mathcal{T}\left(v_{2}\right)$ should be $\mathcal{T}_{A}\left(v_{2}\right)$

Page 21, line 23: + should be $=$

Page 22, line -9: Definition 1.2.10 should be Definition 1.2.9

Page 26, problem 6: The bottom entry of v_{2} should be 9

Pages 26 and 27 , problems 8,9 , and 10 : all occurrences of \mathbb{F} should be \mathbb{R}

Page 50, fourth sentence: (-3) row 3 to row 2 should be (-2) row 3 to row 2

Page 50, line -3: row-reduced echelon form should be reduced row-echelon form

Page 50, line -2: some zero should be some zero row

Page 52 second displayed formula: $x_{1 j_{1}}$ should be $x_{j_{1}}$ and similarly for $x_{2 j_{2}}$ and $x_{k j_{k}}$

Page 55 Problem 6(b): $a b-b c$ should be $a d-b c$

2
Page 69, line 6: which reduces to $\left[\begin{array}{ccc|c}1 & 1 & 2 & 3 \\ 0 & 1 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$ should be
which reduces to $\left[\begin{array}{lll|l}1 & 1 & 2 & 3 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0\end{array}\right]$

Page 70, line 11: (d) should be (b)

Page 71 statement of Lemma 3.3.4: with $n>m$ should be with $n>m$ (possibly $n=\infty$)

Page 71 proof of Lemma 3.3.4: Insert as first line of proof: Since \mathcal{D} is linearly dependent if any subset of it is, it suffices to consider the case \mathcal{D} finite.

Page 73 , line -12 : set of n vectors should be set of m vectors

Page 73, line -11: which has $m<n$ vectors should be which has $n<m$ vectors

Page 75 lines -13 and -11 : in V should be in \mathcal{B}

Page 75 line -12 : in v should be in \mathcal{B}

Page 79, line -1: subset should be subspace

Page 81, lines 10, 11: All four occurrences of S should be $\operatorname{Span}(S)$

Page 81 , line -11: $\operatorname{Span}(W)$ should be W

Page 87 , line -5 : see every should be see that every

Page 93, line -8: $v=t_{1}+w$ should be $v=t_{1}+w_{1}$

Page 97, Problem 6(f): $2+3+7 x^{2}+9 x^{3}$ should be $2+3 x+7 x^{2}+9 x^{3}$

Page 101, Exercise 18: function should be continuous function

Page 110, line -7: Corollary 3.5.7 should be Corollary 4.2.7

Page 112 lines $-13,-7: B$ should be \mathcal{B}

Page 112, line -6: $\mathcal{T}(v)=\sum c_{i} v_{i}$ should be $\mathcal{T}(v)=\sum c_{i} \mathcal{T}\left(v_{i}\right)=\sum c_{i} w_{i}$

Page 114, line -11: C should be \mathcal{C}

Page 115, lines 19 and 21: Lemma 4.3.7(1) should be Lemma 4.3.7(2) and Lemma 4.3.7(2) should be Lemma 4.3.7(1)

Page 115, line -1: Definition 3.3.1 should be Definition 4.1.1

Page 120, line -8: Let is should be Let us

Page 122, line -3: invertible should be invertible, or nonsingular,

Page 131, line -13: $\operatorname{Int}_{a}(\operatorname{Der}(f(x)))$ should be $\operatorname{Int}_{a}(\operatorname{Der}(F(x)))$

Page 186 line 19: $[T]_{\mathcal{B}}$ should be $[\mathcal{T}]_{\mathcal{B}}$

Page 196, lines 1-2: v_{1} has length 1 should be v_{1} has length 5

Page 224, line -1: $\left[\begin{array}{ll}-30 & 36 \\ -25 & 30\end{array}\right]$ should be $\left[\begin{array}{ll}-30 & 36 \\ -25 & 30\end{array}\right]\left[\begin{array}{l}6 \\ 5\end{array}\right]$

Page 225, line -8: eigenvector 0 should be eigenvalue 0

Page 299, line -2: in V should be on V

Page 312, line 2: $[\varphi]$ should be $[\bar{\varphi}]$

Page 312, line 16: $\psi\left(x, \mathcal{T}^{*}(y)\right)$ should be $\varphi\left(x, \mathcal{T}^{*}(y)\right)$

Page 332, line -1: $\left(\left\langle z, x_{i}\right\rangle /\left\|x_{i}\right\|\right)^{2}$ should be $\left(\left\langle z, x_{i}\right\rangle /\left\|x_{i}\right\|^{2}\right)$

Page 333, line 5: $\left(\left\langle w_{0}, x_{i}\right\rangle /\left\|x_{i}\right\|\right)^{2}$ should be $\left(\left\langle w_{0}, x_{i}\right\rangle /\left\|x_{i}\right\|^{2}\right)$

