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Nonlocal Contributions to Degenerate Four-Wave Mixing in Noncentrosymmetric Materials
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Cascaded second-order and piezoelectric contributions to degenerate four-wave mixing in noncen-
trosymmetric materials are analyzed in detail. The effective third-order susceptibility measured in
degenerate four-wave mixing becomes strongly dependent on experimental parameters that do not nor-
mally influence the third-order response in centrosymmetric materials. This introduces important new
requirements for reliable reporting of experimental results. A new technique that allows us to experi-
mentally relate the third-order susceptibility to the high-frequency electro-optic and dielectric properties
is introduced and demonstrated in BaTiO3 and KNbO3. [S0031-9007(98)08117-4]
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Pulsed degenerate four-wave mixing (DFWM) is
widespread tool for characterizing third-order susce
tibilities of candidate materials for nonlinear optica
applications. We discuss important second-order effe
that cause unexpected geometrical and pulse-length
pendencies of the DFWM signal. They are due to th
concurrent processes of optical rectification and line
electro-optic effect, and to piezoelectric elastic relaxatio
If neglected, these “cascaded” second-order effects c
lead to misleading DFWM results in noncentrosymmetr
materials. In this Letter we give the first complete expre
sions to calculate their contributions to the DFWM signa
and show how they can be used to relate experimenta
the third-order susceptibility to the linear electro-optic an
dielectric properties.

We first point out the origin of second-order contribu
tions and give general equations for calculating them f
the most important DFWM setups, correcting and com
pleting some expressions given in Ref. [1]. We the
discuss the piezoelectric relaxation of the crystal as it
constrained by the boundary conditions defined by th
DFWM experimental geometry, and calculate the effe
tive electro-optic and dielectric tensors to be used wh
relaxation to a new elastic configuration is possible. Las
we demonstrate experimentally, in the well known electr
optic materials BaTiO3 and KNbO3, how these results can
be used to obtain absolute third-order susceptibilities
comparing to independently determined electro-optic a
dielectric properties, without using a reference material.

We start with the definition of the third-order nonlinea
optical susceptibilities. Consider an electric field that
a sum of three plane waves with wave vectorski and
frequencyv,

Esr, td ­
1
2

3X
n­1

Ensv, knd expfisknr 2 vtdg 1 c.c.,

(1)

where theEnsv, knd are the complex amplitudes of the
three input waves, which can be distinguished by the
wave vectors. In case of pulsed experiments, Eq. (
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describes the field in a time interval much shorter tha
the laser pulses, which we consider so long that a
“instantaneous” response can be safely assumed.

The field of (1) induces a time-dependent third-orde
polarization [2,3],

P
s3d
l sr, td ­ e0x

s3d
ijkl ? Eisr, tdEjsr, tdEksr, td , (2)

wherex
s3d
ijkl is the third-order nonlinear optical susceptibil-

ity in the time domain,e0 is the permittivity of vacuum,
and we use SI units. Summation over repeated indices
understood.

Figure 1 shows two ways of arranging the three inpu
waves so that the nonlinear polarization at frequenc
v and wave vectork4 ­ k1 1 k2 2 k3, with complex
amplitudePsv, k4d, radiates the signal wave in a phase
matched way over the whole sample thickness. Insertin

k1

k3

k2

k4

k1

k3

k4

k2 x

y

z

(a) (b)

ki,x = const.

 z

y

 x

y

k2 k3

k1k4

k2 k3

k1k4

kbkb

ka ka

ki,z = 0

FIG. 1. Two common DFWM experimental geometries.
Three beams with wave vectorsk1, k2, and k3 interact in a
sample to generate a fourth beam with wave vectork4. The
interacting beams and the sample are drawn in thex-y plane in
the first line, and the coordinates of the beam wave vectors a
plotted in the second line. For clarity, thex andy axes are not
in scale. (a) Beams 1 and 2, and beams 4 (signal) and 3, a
counterpropagating [4]. (b) All input beams travel towards the
positivex direction. The beams are distinguished by a slightly
different z direction [5].
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(1) into (2), and collecting the terms with frequencyv

and wave vectork4, one finds

Plsv, k4d ­
3
2 e0x

s3d
ijklsv, v, 2v, 2v, k1, k2, 2k3, 2k4d

3 Eisv, k1dEjsv, k2dEp
ks2v, 2k3d . (3)

x
s3d
ijklsv, v, 2v, 2v, k1, k2, 2k3, 2k4d is the third-order

optical susceptibility tensor that describes DFWM [4].
Our SI expressions use the same convention as

Ref. [6]. They go over to the ones in electrostatic unit
(e.s.u.) of Refs. [2,3], used in a relevant part of the
literature, with the substitutione0x

s3d
ijkl $ 4cijkl, while
194
in
s

numerical values are converted using the rule

x
s3d
ijklfm2 V22g ­ 4

4p

s1024cd2 cijklfe.s.u.g , (4)

wherec is the speed of light in vacuum in mys. This takes
into account the additional factor (1y4) that was included
in the definition of the third-order susceptibilitiescijkl [2].

In a noncentrosymmetric material, the field of (1) als
leads to a second-order polarization. The only part th
gives a large phase matched contribution to DFWM
induced by optical rectification, and it consists of the su
of two components oscillating in space like a plane wav
Their complex amplitudes are
(1) to
PsORd
p sv ­ 0, ka ­ k1 2 k3d ­ e0x

s2d
ikpsv, 2v, 0, k1, 2k3, 2kadEisv, k1dEp

k s2v, 2k3d (5)

and

PsORd
p sv ­ 0, kb ­ k2 2 k3d ­ e0x

s2d
jkpsv, 2v, 0, k2, 2k3, 2kbdEjsv, k2dEp

k s2v, 2k3d . (6)

These two polarizations are induced by two pairs of input waves. They interact with the remaining input wave in
generate a nonlinear polarization of exactly the same form as (3), with frequencyv and wave vectork4:

Pcasc
l sv, k4d ­ e0x

s2d
pjls0, v, 2v, ka, k2, 2k4d

"
POR

p skad
e0sepp 1 2d

1 EOR
p skad

#
Ejsv, k2d

1 e0x
s2d
pils0, v, 2v, kb , k1, 2k4d

"
POR

p skbd
e0sepp 1 2d

1 EOR
p skbd

#
Eisv, k1d . (7)
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The factoreii 1 2 has been discussed by Flytzanis an
Bloembergen [7]. It is obtained in the Lorenz loca
field approximation by relating to the microscopic (local
electric field induced by the polarization.

EORskd is the macroscopic electric field that can be
induced by the polarizationPORskd ­ PORsv ­ 0, kd
in (5) and (6). For laser pulses so long that time
varying magnetic fields can be neglected,EORskd must
be curl-free. Through the linear susceptibility, it induce
a polarization that must be added toPOR to get the
displacement fieldDi ­ e0eijEOR

j 1 POR
i , which must

be divergence-free in the absence of free charges. Fro
rot EOR ­ 0 and divD ­ 0 we obtain

EORskd ­ 2k
kiP

OR
i skd

e0eijkikj
. (8)

It is useful to separatePOR in a transversal part with
zero divergence andPORskd ' k, and a longitudinal
part with zero curl andPORskd k k. EOR ­ 0 for a
transversal polarization, andEOR

i ­ 2POR
i yse0eiid for a

longitudinal polarization oriented parallel to a main axis
of the dielectric tensor.

In a DFWM experiment, the contributions from (3) and
(7) add. By combining (7) with (5) and (6), and compar
ing to (3), we can define an effective susceptibility tha
must replacex

s3d
ijkl in (3) whenever a noncentrosymmetric

material is used:
x

s3d,EFF
ijkl ­ x

s3d
ijkl 1 x

casc,ka

ijkl 1 x
casc,kb

ijkl . (9)

x
casc,ka

ijkl and x
casc,kb

ijkl describe the cascaded contribution
and depend on the wave vector differenceska ­ k1 2

k3 andkb ­ k2 2 k3, via (5)–(8). They can be calcu-
d
l
)

s

m

-
t

s

lated in a more compact form by relating the second-ord
susceptibilities appearing in (5)–(7) to the electro-op
coefficientsrijk ­ rjik describing the change of the opti
cal indicatrix by an electric fieldE asDs1yedij ­ rijkEk :

x
s2d
ijksv, 2v, 0d ­ 2

1
2 n2

i n2
j rijk , (10)

where theni are the refractive indices at frequencyv, and
x

s2d
kijs0, v, 2vd ­ x

s2d
ijksv, 2v, 0d.

We can now writex
casc,ka

ijkl and x
casc,kb

ijkl for ka and
kb parallel to a main axis of the dielectric tensor. Fo
PsORdsv ­ 0, kd ' k (transversal polarization),

x
casc,ka

ijkl ­
1
6

n2
i n2

j n2
kn2

prikprjlp

epp 1 2
, (11)

x
casc,kb

ijkl ­
1
6

n2
i n2

j n2
kn2

prjkprilp

epp 1 2
. (12)

For PsORdsv ­ 0, kd k k (longitudinal polarization),

x
casc,ka

ijkl ­ 2
1
3

1
epp

n2
i n2

j n2
kn2

prikprjlp

epp 1 2
, (13)

x
casc,kb

ijkl ­ 2
1
3

1
epp

n2
i n2

j n2
kn2

prjkprilp

epp 1 2
. (14)

For high dielectric constants these last “longitudinal” co
tributions are negligible. But in low-dielectric constan
materials such as molecular crystals they can remain co
parable to the direct third-order susceptibility.

In (11)–(14),rijk andeij are electro-optic and dielectric
tensors at constant strain when short enough pulses
used, but they are effective tensors including acous
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phonon contributions when the spatial periods2pyka or
2pykb are so small that elastic deformations can bui
up during the laser pulse length. This can already
the case for 100 ps pulses for one of the contributions
Fig. 1a:2pykb can reach0.1 mm inside the crystal for a
light wavelength of,0.5 mm, and an acoustic wave with
a speed of 5 kmys travels that distance in 20 ps.

These effective tensors are not simply the direct
measurable ones at constant stress (unclamped) bec
only certain acoustic phonon contributions are allowe
The electric and strain fields in the crystal must hav
in our case a plane-wave spatial dependenceEskd ­
E expsikxd and uskd ­ u expsikxd with the complex
(vectorial) amplitudesE andu. This boundary condition
breaks the symmetry of the crystal, leading to modifie
wave vector dependentrijk and eij tensors with a lower
symmetry. A similar problem has been treated in Ref. [
assuming an electric field always parallel to the modul
tion wave vector. In our case the rectified polarizatio
can also be perpendicular to the wave vectorska andkb ,
and we need to treat the problem in general by looking
the general relationships between electric field, strain, a
dielectric tensor. The electro-optic tensorrS

ijk at constant
strain and the elasto-optic tensorpE

ijkl at constant electric
field determine the change in the dielectric tensor induc
by the spatially sinusoidal electric and strain fields,

De21
ij skd ­ rS

ijkEkskd 1 pE
ijkluklskd , (15)

whereuklskd ­ ≠ukskdy≠xl .
By calculating uskd from Eskd, we can relate the

amplitude of the dielectric tensor modulation (15) t
the amplitude of the electric field modulationE with
an effective electro-optic tensorrijk defined byDe

21
ij ­

rijkEk .
The stress tensorTij can be expressed as a function o

the strain tensorSkl ­ sukl 1 ulkdy2 and the electric field
by means of the elastic stiffness tensor at constant elec
field CE

ijkl and the piezoelectric tensoreijk :

Tijskd ­ CE
ijklSklskd 2 emijEmskd . (16)

For a static deformation the divergence of the stress ten
≠Tijy≠xj must vanish [9]. Since all spatial dependencie
are in the form of a plane wave, taking the divergen
leads to an algebraic equation relating the amplitudes
the strain field and the electric field,

CE
ijklk̂jukk̂l ­ Ememijk̂jyk , (17)

with k the modulus of the wave vectork andk̂i ­ kiyk.
Defining Aik ­ CE

ijklk̂jk̂l and bi ­ Ememijk̂jyk, and
substituting in (17), reveals the system of three line
inhomogenous equationsAikuk ­ bi. The matrixAik is
symmetric and can be inverted [9] to obtain the solutio
uk ­ A21

ki bi, which is then inserted in (15) to get the
effective electro-optic coefficient we were looking for,

rijkskd ­ rS
ijk 1 pijmnekluk̂nk̂usA21dml . (18)

The dielectric tensor at constant straineS
ij and the
ld
be
of
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d,
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piezoelectric tensoreijk determine the displacement field
Diskd ­ e0e

S
ijEjskd 1 eijkSjkskd. Insertinguk ­ A21

ki bi

from (17) we obtainDi ­ e0eijEj for the modulation
amplitudes, with the effective dielectric tensor

eijskd ­ eS
ij 1

1
e0

k̂nk̂keimkejlnsA21dml . (19)

Equations (18) and (19) must be used in (11)–(14
whenever elastic deformations can be established dur
the laser pulse length. Note the symmetry breakin
induced by the presence of the wave vectork. The
effective tensors (18) and (19) belong in general to
lower symmetry, e.g., orthorhombic instead of tetragon
for k along the 1 axis in BaTiO3 (where the 1 and 2 axes
are otherwise equivalent).

In centrosymmetric materials, any coefficientx
s3d
ijkl

defined in (3) can be measured in DFWM by appropriate
choosing the polarizations of the three input beams a
the signal beam in the sample reference frame.

This is not true for noncentrosymmetric materials. Eve
when the polarizations are kept constant in the samp
reference frame, the second-order nonlocal contributio
depend on the wave vector differenceska and kb , and
change with sample orientation, DFWM setup, and puls
length.

To fix the ideas, we calculate the influence of these p
rameters for tetragonal BaTiO3 and orthorhombic KNbO3.
We use therS

ijk extrapolated at1.06 mm [10], and
Refs. [8] and [11] for the other material constants.

The separate contributions fromPORskad andPORskbd
are shown in Table I for the two DFWM geometries o
Fig. 1 and two orientations of the polar 3-axis of the crys
tals (labeledc). All light polarizations are kept constant in
the sample reference frame, and the direct third-order co
tributions do not change with crystal orientation or exper
mental setup. The cascaded contributions, on the oth
hand, vary considerably. As an example,x

s3d
3333 can be

measured with (i)c k y and all beams polarized alongy,
or (ii) c k z and all beams polarized alongz (the angles
between the beams can always be chosen so small t
the x components of the optical electric field are negli
gible). Forx

s3d
3333 only r333 contributes toPOR, which is

TABLE I. Cascaded contributions from the rectified polariza
tions with wave vectorska and kb , calculated from (11)–(14)
in units of 10222 m2yV2 for two possible orientations of thec
axis and the two DFWM setups shown in Fig. 1.

Fig. 1a Fig. 1b
c ka kb ka kb

KNbO3 x
casc
3333 y 22 36.6 22 24.3

z 24.3 36.6 24.3 22
x

casc
2233 y 135 135 135 20.3

z 20.3 135 20.3 135
BaTiO3 x

casc
3333 y 20.9 24.2 20.9 24.5

z 24.5 24.2 24.5 20.9
x

casc
1133 y 224 224 20.2 224

z 20.2 224 224 20.2
195
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then parallel toc. For the setup in Fig. 1a, both rectified
polarizations are transversal forc k z, while PORskad
becomes longitudinal forc k y. For the Fig. 1b setup,
PORskad is transversal andPORskbd longitudinal for c k
z, and vice versa forc k y. To give an example of its
effect, we include piezoelectric elastic relaxation for th
contribution with the large wave vectorkb in Fig. 1a.
All other cascaded contributions were calculated using t
clamped (strain-free) coefficients, and are valid up to las
pulse lengths of several nanoseconds, depending on
angle between the beams. The same reasoning can
applied tox

s3d
1133 andx

s3d
2233, but here the piezoelectric con

tribution for ka,b'c always vanishes by symmetry, as ca
be demonstrated with (18).

Despite the fact that direct third-order contribution
are identical for every pair of rows of Table I, the tota
cascaded contributions can differ by a factor of,2.
They are different for the two experimental setups
Fig. 1 and change with sample orientation in the set
of Fig. 1a. Interestingly, in the setup of Fig. 1b, thetotal
cascaded contribution does not depend on the orientat
of the sample. Note also that, in the setup of Fig. 1
acoustic phonons contribute about 50% tox

s3d,EFF
3333 sc k yd

of KNbO3 (which corresponds to more than a factor of
for the DFWM signal).

The total energy in the signal pulse in DFWM is
Esig ­ z 2hjx s3d,EFF j2, wherez is an unknown calibration
factor that depends on difficult to control paramete
such as beam profiles and overlap in the sample,h

collects all known experimental quantities that affe
the measurement, andx s3d,EFF is the active effective
susceptibility coefficient.

For noncentrosymmetric materials the geometry depe
dencies showcased in Table I can be exploited, in pla
of a reference material with well known susceptibility, t
determine the calibration factorz :

z ­
s
p

Esigyh dz 2 s
p

Esigyh dy

jxcascjz 2 jxcascjy
, (20)

where the subscriptsz andy indicate two orientations of
the sample with the same direct third-order contributio
and xcasc is the sum of the two cascaded contribution
in (9). This equation relates the variations in DFWM
signal strength to the calculated cascaded contributio
and therefore the experimental values of the third-ord
susceptibilities to the linear electro-optic properties.

We applied this technique in the experimental geom
try of Fig. 1a for BaTiO3 and KNbO3. The measurements
were performed usingx

s3d
2233 for the calibration and com-

paring the other coefficients to thex
s3d
2233 setup by taking

into account the different light beam polarizations.x
s3d
2233

was chosen because of its large cascaded contributi
and the absence of piezoelectric relaxation (rijk ­ rS

ijk),
which minimizes the influence of experimental errors an
the number of material parameters that must be known
196
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The experimental susceptibility values we mea
sured at 1.06 mm and for 100 ps pulses are, in
units of 10222 m2yV2, x

s3d,EFF
1133 sc k yd ­ 560 6 80,

x
s3d,EFF
1133 sc k zd ­ 340 6 80 for BaTiO3, andx

s3d,EFF
2233 sc k

yd ­ 330 6 70, x
s3d,EFF
2233 sc k zd ­ 190 6 50 for KNbO3.

Note that the direct third-order contributions are only
x

s3d
1133 , 110 for BaTiO3 and x

s3d
2233 , 60 for KNbO3.

For the other coefficients,x
s3d
1111 , 160, x

s3d
3333 , 100 for

BaTiO3, and x
s3d
2222 , 180, x

s3d
3333 , 60 for KNbO3. A

more detailed discussion of these experimental results w
be given elsewhere.

The results above were checked with a classica
reference measurement. Comparing the experimen
signal to the one observed with a 1 mm thick cel
filled with CS2, and using x

s3d,CS2

1111 ­ 263 6 30 [12],
we got x

s3d,EFF
1133 sc k yd ­ 550 6 100 for BaTiO3 and

x
s3d,EFF
2233 sc k yd ­ 290 6 60 for KNbO3.
This is in excellent agreement with the results obtaine

above using the cascading contributions in Table I as
reference, confirming the validity of the expressions an
theoretical interpretations given in this paper.

In conclusion, we have demonstrated that DFWM in
noncentrosymmetric materials requires special care
selecting experimental geometries in order to delive
reliable results, and we have shown how to calculat
the geometry dependent second-order contributions f
different pulse lengths. The second-order contribution
can be exploited to calibrate a DFWM experiment an
relate third-order susceptibilities to second-order dielectr
and electro-optic properties experimentally.
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