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Nonlocal Contributions to Degenerate Four-Wave Mixing in Noncentrosymmetric Materials
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Cascaded second-order and piezoelectric contributions to degenerate four-wave mixing in noncen-
trosymmetric materials are analyzed in detail. The effective third-order susceptibility measured in
degenerate four-wave mixing becomes strongly dependent on experimental parameters that do not nor-
mally influence the third-order response in centrosymmetric materials. This introduces important new
requirements for reliable reporting of experimental results. A new technique that allows us to experi-
mentally relate the third-order susceptibility to the high-frequency electro-optic and dielectric properties
is introduced and demonstrated in BaTi@nd KNbQ. [S0031-9007(98)08117-4]

PACS numbers: 78.20.Bh, 42.65.Hw, 77.65.—j, 77.84.—s

Pulsed degenerate four-wave mixing (DFWM) is adescribes the field in a time interval much shorter than
widespread tool for characterizing third-order suscepihe laser pulses, which we consider so long that an
tibilities of candidate materials for nonlinear optical “instantaneous” response can be safely assumed.
applications. We discuss important second-order effects The field of (1) induces a time-dependent third-order
that cause unexpected geometrical and pulse-length dpelarization [2,3],
pendencies of the DFWM signal. They are due to the ©) _ G '
concurrent processes of optical rectification and linear Pr(r.1) = eoxiju - Ei(r, )E;(r. DEx(r. 1), (2)
electro-optic effect, and to piezoelectric elastic relaxatlonwherexi(;]zl is the third-order nonlinear optical susceptibil-

If neglected, these “cascaded” second-order effects Cagy in the time domaine, is the permittivity of vacuum,
lead to misleading DFWM results in noncentrosymmetricand we use SI units. Summation over repeated indices is

materials. In this Letter we give the first complete expresynderstood.

sions to calculate their contributions to the DFWM signal,  Figure 1 shows two ways of arranging the three input
and show how they can be used to relate experimentallyayes so that the nonlinear polarization at frequency
the third-order susceptibility to the linear electro-optic and,, and wave vectok, = k; + ks — k3, with complex

dielectric properties. amplitudeP(w, k4), radiates the signal wave in a phase

~ We first point out the origin of second-order contribu- matched way over the whole sample thickness. Inserting
tions and give general equations for calculating them for

the most important DFWM setups, correcting and com-

pleting some expressions given in Ref. [1]. We then @) y (b)
discuss the piezoelectric relaxation of the crystal as it is <1 Ky
constrained by the boundary conditions defined by the > Koy X k\) kg
DFWM experimental geometry, and calculate the effec- “3—> < 2 "3 > —
tive electro-optic and dielectric tensors to be used when <« —
relaxation to a new elastic configuration is possible. Last, K4 k2
we demonstrate experimentally, in the well known electro- kiz=0 i, = const.
optic materials BaTi@and KNbQ, how these results can Y Y
be used to obtain absolute third-order susceptibilities by ko Kp ks ko ko k3
comparing to independently determined electro-optic and ®€——————®@ o<—o
dielectric properties, without using a reference material. ka¢— X ¢ka— z
We start with the definition of the third-order nonlinear o [ o )
optical susceptibilities. Consider an electric field that is K4 k1 Kq k1
a sum of three plane waves with wave vectirsand FIG. 1. Two common DFWM experimental geometries.
frequencyw, Three beams with wave vectoks, k,, and k; interact in a
1 e sample to generate a fourth beam with wave ve&tar The
E(r,7) = 5 Z E,(w,k,) exdi(k,r — wt)] + c.c, interacting beams and the sample are drawn inxtlyeplane in
n=1 the first line, and the coordinates of the beam wave vectors are

() plotted in the second line. For clarity, theandy axes are not

. in scale. (a) Beams 1 and 2, and beams 4 (signal) and 3, are
where theE,(w,k,) are the complex amplitudes of the_counterpropagating [4]. (b) All input beams travel towards the

three input waves, which can be distinguished by theihositive x direction. The beams are distinguished by a slightly
wave vectors. In case of pulsed experiments, Eq. (1{lifferentz direction [5].
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(1) into (2), and collecting the terms with frequeney
and wave vectok,, one finds

3
Pi(w.ks) = 2eoxim(w, 0, — 0, — . K, Kz, —k3, —ky)
X Ei(w,k)Ej(w,k)E(—w,—k3). (3)

/\/i(;,zl(w, w,—w,—w,ki,k,, —Kk3, —K4) is the third-order
optical susceptibility tensor that describes DFWM [4].
Our Sl expressions use the same convention as

numerical values are converted using the rule
4

Xglzz[m2 V=4 ﬁ cijulesu], (4
wherec is the speed of light in vacuum infa. This takes
into account the additional factor (4) that was included
in the definition of the third-order susceptibilitieg;; [2].

In a noncentrosymmetric material, the field of (1) also
iilgads to a second-order polarization. The only part that

Ref. [6]. They go over to the ones in electrostatic unitsgives a large phase matched contribution to DFWM is
(e.s.u) of Refs. [2,3], used in a relevant part of the induced by optical rectification, and it consists of the sum

literature, with the substitutiorroxlf?,zl < 4c;jr;, while

and

2 s
PO®w = 0,k, = ks — ks) = eoxiip(@, —,0,ks, —ks, —k})Ej (0, k) Ef (— @, —k3).

of two components oscillating in space like a plane wave.

| Their complex amplitudes are
2 x
POR(w = 0.k, = ki — k3) = eoxiin(@, —©,0,k1, —k3, ~K,)Ei(@, k) Ef(—, —ks)

(5)

(6)

These two polarizations are induced by two pairs of input waves. They interact with the remaining input wave in (1) to
generate a nonlinear polarization of exactly the same form as (3), with frequeaogl wave vectoky:

. 2)
PlcasC(w’k4) — EO/\/](le(O’ w, —w, kaa k2a _k4) |:

2
+ €0X,(;i)z(0, w, —o,K;, K, —k4)|:

PR (k,)
o€y, + 2)

PR (kp)
eolepp +2)

+ E,(;)R(ka):|Ej(w’k2)

+ E,?R(kb):|Ei(w,k1)~ (7)

The factore; + 2 has been discussed by Flytzanis andlated in a more compact form by relating the second-order

Bloembergen [7].

electric field induced by the polarization.

ECR(k) is the macroscopic electric field that can be

induced by the polarizatioP°R(k) = POR(w = 0,k)
in (5) and (6).
varying magnetic fields can be neglectd&fR (k) must

be curl-free. Through the linear susceptibility, it induces

a polarization that must be added RPR to get the

It is obtained in the Lorenz local susceptibilities appearing in (5)—(7) to the electro-optic
field approximation by relating to the microscopic (local) coefficientsr;

= rjix describing the change of the opti-
cal indicatrix by an electric fiel® asA(1/e€);; = rijxEx:

@ 1
Xijk(wa_wao) = —§n,-2n]2-r,»jk, (10)

For laser pulses so long that timewhere then; are the refractive indices at frequeney and

) ()
Xiij(0, 0, —w) = xji(®, —w,0).
casc.,k,

We can now writey;

casc.,k;

and x;ix for k, and

i : o -OR OR . k, parallel to a main axis of the dielectric tensor. For
displacement fieldD; = eoe;;Ej™ + P; ™, which must POR)(y» = 0,k) L k (transversal polarization),
be divergence-free in the absence of free charges. From 222,
rot EOR = 0 and divD = 0 we obtain casck, 1 Wi, TigpTijip

EOR(k K kiPPR (k) 8 Xijet— = g €pp + 2 ’ (11)
() = eo€ijkik; ®) 2,222

i . ) . casc,k, 1 ninj nknprjkprllp
It is useful to separat®®R in a transversal part with Xkl = ¢ - 1o (12)
zero divergence an®°®(k) L k, and a longitudinal e o
part with zero curl andPOR(k) || k. E°R =0 for a ForP©®(w = 0,k) || k (longitudinal polarization),
transversal polarization, anBi’® = —P R /(ee;;) for a ok, 11 ndndndnlraprin
longitudinal polarization oriented parallel to a main axis Xijki = Ty - 12 (13)
of the dielectric tensor. pp - ”21’

In a DFWM experiment, the contributions from (3) and casck, 1 1 1 njnknf, TikpTilp 14
(7) add. By combining (7) with (5) and (6), and compatr- Xijki 3 a €pp + 2 (14)

ing to (3), we can define an effective susceptibility that

3) . .
must replacey;;; in (3) whenever a noncentrosymmetric
material is used:

For high dielectric constants these last “longitudinal” con-
tributions are negligible. But in low-dielectric constant

(3).EFF (3 casc.k, casc K, materials such as molecular crystals they can remain com-
. Xijki —k Xijki + Xijk T Xijkl (©) parable to the direct third-order susceptibility.
Xin - and x; " describe the cascaded contributions In (11)—(14),r;; ande;; are electro-optic and dielectric

and depend on the wave vector differentgs= k; —
k; andkb =k, —

194

tensors at constant strain when short enough pulses are
ks, via (5)—(8). They can be calcu- used, but they are effective tensors including acoustic
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phonon contributions when the spatial peridds/k, or  piezoelectric tensoe,;; determine the displacement field
27 /k, are so small that elastic deformations can buildp;(k) = eoeijj(k) + ek Sik(K). Insertingu;, = Ay'b
up during the laser pulse length. This can already b&rom (17) we obtainD; = €ye;;E; for the modulation
the case for 100 ps pulses for one of the contributions odmplitudes, with the effective dielectric tensor

Fig. 1a:27 /k;, can reacl).1 um inside the crystal for a s 1 »
light wavelength of~0.5 wm, and an acoustic wave with €ij(K) = € + e Rieimkejin(A™ i - (19)
a speed of 5 kifs travels that distance in 20 ps. Equations (18) and (19) must be used in (11)—(14)

These efiective fensors are not simply the dlreCﬂywhenever elastic deformations can be established during

measurable ones at constant stress (unclamped) becaqﬁs laser pulse length. Note the symmetry breaking

only certain acoustic phonon contributions are allowedinduced by the presence of the wave veckar The

The electric and strain fields m_the crystal must haveeffective tensors (18) and (19) belong in general to a
in our case a plane-wave spatial dependekick) =

E exp(ikx) and u(k) — u exp(ikx) with the complex lower symmetry, e.g., orthorhombic instead of tetragonal

: . ; » for k along the 1 axis in BaTi©(where the 1 and 2 axes
(vectorial) amplitude® andu. This boundary condition are otherwise equivalent).

breaks the symmetry of the crystal, leading to modified, : ) .0
In centrosymmetric materials, any coefficient;y,

wave vector dependent;, ande;; tensors with a lower : ! ' ¢
symmetry. A similar problem has been treated in Ref. [g]d€fined in (3) can be measured in DFWM by appropriately
choosing the polarizations of the three input beams and

assuming an electric field always parallel to the modula> ; )
tion wave vector. In our case the rectified polarizationth® Signal beam in the sample reference frame.

can also be perpendicular to the wave veclorsandk This is not true for noncentrosymmetric materials. Even
and we need to treat the problem in general by looking a/n€n the polarizations are kept constant in the sample
the general relationships between electric field, strain, anfgference frame, the second-order nonlocal contributions

dielectric tensor. The electro-optic tensgy, at constant dﬁpend ththe wa}ve yectto;_diffelgr'e:r\llvci:/lg ar:d ky, %nd |
strain and the elasto-optic tensp)ﬁk, at constant electric  C'2n9¢€ with sample orientation, S€lup, and pulse

field determine the change in the dielectric tensor induceéler.llggr}ix the ideas. we calculate the influence of these pa-
by the spatially sinusoidal electric and strain fields, ' P

s rameters for tetragonal BaTi@nd orthorhombic KNb@
Ae;;' (k) = rijEc(k) + plyun(k), (15) We use ther}, extrapolated atl.06 um [10], and
_ Refs. [8] and [11] for the other material constants.
Whereukl(k) = 8uk(k)/ax1. . .

By calculating u(k) from E(k), we can relate the _ 1he Separate contributions froRP®(k,) andP°%(k;)
amplitude of the dielectric tensor modulation (15) to &€ Shown in Table I for the two DFWM geometries of
the amplitude of the electric field modulatio with Fig. 1 and two orientations of the polar 3-axis of the crys-
an effective electro-optic tensor;, defined byAe;;! = tals (labeled:). All light polarizations are kept constant in
rinEx ! YV the sample reference frame, and the direct third-order con-

ij .

The stress tensdF,; can be expressed as a function Oftributions do not change with crystal _orie_ntation or experi-
the strain tensoBy = (g + uy)/2 and the electric field mental setup. The cascaded contributions, on the other

Mk : (3)
by means of the elastic stiffness tensor at constant electrftand, vary considerably. As an exampjgss; can be

field CJ; and the piezoelectric tenser;: measured with (i) || y and all beams polarized along
- or (ii) ¢ || z and all beams polarized along(the angles
Tij(K) = CijtySu(K) — emijEm(K). (16)  petween the beams can always be chosen so small that

For a static deformation the divergence of the stress tensdie x components of the optical electric field are negli-
aT;;/dx; must vanish [9]. Since all spatial dependenciesgible). For)(g)33 only r333 contributes toP°R, which is
are in the form of a plane wave, taking the divergence

leads to an algebraic equation relating the amplitudes OofABLE I. Cascaded contributions from the rectified polariza-

the strain field and the electric field, tions with wave vectork, andk,, calculated from (11)—(14)
in units of 1072> m?/V? for two possible orientations of the
ClukjuRi = EpenijRi/k, (17)  axis and the two DFWM setups shown in Fig. 1.
with k the modulus of the wave vecterandx; = k;/k. Fig. 1a Fig. 1b
Defining Ay = Cly k& and b; = Enenijk;/k, and c kg k K, ky
substituting in (17), reveals the system of three lineaknpo,  ysi5 —2 36.6 —2 24.3
inhomogenous equations,u; = b;. The matrixA;, is Z 243 36.6 243 -2
symmetric and can be inverted [9] to obtain the solution X5y 135 135 135 -0.3
ury = Ag;'b;, which is then inserted in (15) to get the z —-03 135 -0.3 135
effective electro-optic coefficient we were looking for, ~ BaTiOs  x3335 -09 242 —0.9 24.5
s o 1 N z 245 24.2 24.5 -0.9
rijk(k) = Tijk + pijmnekluKnKu(A )ml- (18) )(fi‘gg y 224 224 —-0.2 224
z —-0.2 224 224 —-0.2

The dielectric tensor at constant strai; and the
195
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then parallel tac. For the setup in Fig. 1a, both rectified The experimental susceptibility values we mea-
polarizations are transversal far|| z, while PO®(k,) sured at 1.06 um and for 100 ps pulses are, in

becomes longitudinal for || y. For the Fig. 1b setup, units of 1072 m2/V2, y ™ (c |l y) = 560 + 80,

OR ; OR P
P°%(k,) is transversal and® (kh) longitudinal forc ||_ X%EFF(C Il z) = 340 + 80 for BaTiOs, anng)é;EFF(C I
z, and vice versa for || y. To give an example of its

- (3),EFF B
effect, we include piezoelectric elastic relaxation for the)lil) t_ 3t$10tith70, a\/izr233t tﬁcirjzll-Z)rd_rlgo nit_rif)o':iogKNbrO} o
contribution with the large wave vectdt, in Fig. la. 8)9 at the direc oraet co utions are-only

: (3)
All other cascaded contributions were calculated using thg1133 ~ 110 for BaTiO; ar;()j X223 ~ 603)for KNbOs;.
clamped (strain-free) coefficients, and are valid up to lasefor the other coefficientsy,;;; ~ 160, x3333 ~ 100 for
pulse lengths of several nanoseconds, depending on tBaTIO;, and yiib, ~ 180, xiiss ~ 60 for KNbO;. A

angle between the beams. The same reasoning can hre detailed discussion of these experimental results will

applied to,\/ﬁég and)(g)B, but here the piezoelectric con- be given elsewhere.

tribution fork,, , 1 c always vanishes by symmetry, as can The results above were checked with a classical

be demonstrated with (18). reference measurement. Comparing the experimental
Despite the fact that direct third-order contributionssignal to the one observed with a 1 mm thick cell
are identical for every pair of rows of Table I, the total filled with CS,, and using/yﬁ)l’fs2 = 263 + 30 [12],

cascaded contributions can differ by a factor o2. e got ' E (¢ || y) = 550 + 100 for BaTiO; and
They are different for the two experimental setups of (3).EFF )

. . - . . 2233 (C Il y) = 290 =+ 60 for KNbO3
(';lglgi;. T;c_j f:tz?(g;ir\:\gw ?ﬁ?}glie?ﬂsrgf E%n Ilrkl) thle sletuﬁ( This is in excellent agreement with the results obtained

above using the cascading contributions in Table | as a

cascaded contribution does not depend on the Orientatiol%ference, confirming the validity of the expressions and

of the sample. Note also that, in the setup of Fig. 1atheoretical interpretations given in this paper.

. . 3),EFF
acoustic phonons contribute about 50%3ss (¢ I v In conclusion, we have demonstrated that DFWM in
of KNbO; (which corresponds to more than a factor of 2noncentrosymmetric materials requires special care in
for the DFWM signal). _selecting experimental geometries in order to deliver

The t‘;tal energy in the signal pulse in DFWM s (g|iaple results, and we have shown how to calculate
Egg = *nlx O] , where( is an unknown calibration  the geometry dependent second-order contributions for
factor that depends on difficult to control parametersyitferent pulse lengths. The second-order contributions
such as beam profiles and overlap in the sample, can pe exploited to calibrate a DFWM experiment and
collects all known experimental quantities that affect;g|ate third-order susceptibilities to second-order dielectric

susceptibility coefficient.

For noncentrosymmetric materials the geometry depen-
dencies showcased in Table | can be exploited, in place
of a reference material with well known susceptibility, to [1] M. Zgonik and P. Ginter, J. Opt. Soc. Am. B, 570—

determine the calibration factdr. 576 (1996)
~ WEsg/m): — WEsg/n)y [2] P.D. Maker and R.W. Terhune, Phys. Ré&87, A801—
{ B |)(casc|Z — |Xcasc|V ’ (20) A818 (1964).

[3] R.W. Hellwarth, Prog. Quantum Electrob, 1-68 (1977).
where the subscripts andy indicate two orientations of  [4] R.W. Hellwarth, J. Opt. Soc. Ang7, 1 (1977).

the sample with the same direct third-order contribution, [5] F.P. Strohkendl|, L.R. Dalton, R.W. Hellwarth, H.W.
and y°®¢ is the sum of the two cascaded contributions  Sarkas, and Z.H. Kafafi, J. Opt. Soc. Afi¥, 92 (1997).

in (9). This equation relates the variations in DFWM [6] P.N. Butcher and D. CottefThe Elements of Nonlinear
signal strength to the calculated cascaded contributions,  OPtics(Cambridge University Press, Cambridge, 1991).
and therefore the experimental values of the third-order! ] Chr. Flytzanis and N. Bloembergen, Prog. Quantum

o oerees . ) . Electron.4, 271-300 (1977).
susceptibilities to the linear electro-optic properties. [8] M. Zgonik. R. Schleséer, I.)Biaggio, E. Voit, J. Tscherry,

We applied this technique in the experimental geome-"" _ 4 p Ginter J. Appl. Phyz4, 1287 (1993).
try of Fig. 1a for BaTiQ and KNbQ. The measurements [9] F.I. Fedorov, Theory of Elastic Waves in Crystals

were performed usingfg)% for the calibration and com- (Plenum Press, New York, 1968).

paring the other coefficients to theas; setup by taking  [10] 58 Z%g‘fizggié)l\ﬂ- Zgonik, and P. Gnter, J. Appl. Phys.
. . . T 3) : .
into account the different light beam polarizationgsy»s; 11] M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser,

was chosen because of its large cascaded contributions ™ p Gunter, M.H. Garrett, D. Rytz, Y. Zhu, and X. Wu

and the absence of piezoelectric relaxatiop (= rfjk), Phys. Rev. B50, 59415949 (1994).
which minimizes the influence of experimental errors and12] N. Tang, J. P. Partanen, R.W. Hellwarth, and R. J. Knize,
the number of material parameters that must be known. Phys. Rev. B48, 8404 (1993).

196



