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A significant portion of familial breast/ovarian cancer patients 
harbors a mutation in Breast Cancer Associated gene 1 (BRCA1). 
Cells deficient for BRCA1 exhibit chromosome aberrations such 
as whole chromosome duplications, translocations, inter-sister 
gaps and gene mis-regulation. Here, new evidence is reviewed 
that defects in sister chromatid cohesion may contribute directly 
to cancer cell phenotypes—especially those of BRCA1 mutant 
cells. Linking cohesion to BRCA1-dependent tumorigenesis are 
reports that BRCA1-associated components (DNA helicase, RFC, 
PCNA and genome surveillance factors) are required for efficient 
sister chromatid cohesion. Other cohesion factors (WAPL, EFO2/
ESCO2 and hSecurin) are tightly correlated with various cell-
type specific carcinogenesis, in support of a generalized model for 
cohesion in cancer. Recent findings further reveal that a reciprocal 
relationship exists in that DNA damage induces new Ctf7/Eco1-
dependent sister chromatid pairing reactions that, in turn, are 
required for efficient DNA repair. Future research into sister chro-
matid pairing mechanisms are likely to provide critical new insights 
into the underlying causes of cancer.

Introduction

Breast and ovarian cancers dramatically impact the lives of 
affected women and further place a significant economic burden 
on both their families and the health care system. Roughly 25% of 
familial breast and breast/ovarian cancer patients harbor a mutation 
in Breast Cancer Associated gene 1 (BRCA1). Long-term prospects 
for BRCA1-dependent basal-type breast cancer patients are poor,1 
mandating that elucidation of BRCA1 pathways remain a prominent 
research priority. BRCA1 is a tumor suppressor protein comprised 
in part of a N-terminal RING finger domain, two NLS motifs and 
a C-terminal BRCT domain. A significant source of information 
regarding BRCA1 function is predicated on its binding partners. 
For instance, BRCA1 associates with BARD1 (E3 ubiquitin ligase), 
BASC (DNA replication-associated repair), MRN (DNA damage 

sensor complex), BACH1/BRIP/FANCJ (DNA helicase), CBP/
p300-RNA polymerase II holoenzyme (acetyltransferase transcrip-
tion activator) and many other factors.2,3 While this abundance of 
BRCA1-interactions reveals a plethora of subcomplexes and func-
tions, it simultaneously complicates BRCA1 analyses. What is clear 
is that BRCA1-deficient cells exhibit chromosome aberrations that 
include whole chromosome duplications, translocations, chromo-
some breaks, elevated sister chromatid exchange rates and inter-sister 
gaps.4-7 Linking pleiotropic chromosomal effects to a singular 
underlying mechanism will provide critical new insights into the 
molecular basis of cancer and to BRCA1-dependent tumorigenesis 
in particular.

Fundamental for high fidelity chromosome segregation is the 
pairing of sister chromatids from DNA replication until anaphase 
onset. The pairing of sister chromatids, termed cohesion, requires 
the coordination of four activities (cohesins, deposition, regulators 
and establishment)—all of which are highly conserved through 
evolution.8-10 Cohesins (Smc1, Smc3, Irr1/Scc3/Psc3/SA1/SA2 
and Mcd1/Scc1/Rad21) maintain sister pairing from S phase until 
anaphase onset and resist poleward-pulling forces produced by the 
mitotic spindle (nomenclature indicative of either yeast, human, 
Drosophila, frog or worm). At least a subset of cohesins comprise a 
soluble ring-like complex that is thought to encompass each sister 
chromatid.9-14 Scc2/Mis4/Nipped-B/NIPBL and Scc4 function as 
a cohesin deposition complex that load cohesin ring-like complexes 
onto chromosomes. Cohesin deposition can occur throughout the 
cell cycle, but loading at least must occur in S phase with some 
evidence that loading prior to S phase also may be important.11,15-19 
Regulating cohesin dynamics is accomplished by the antagonistic 
functions of Pds5/Spo76/BimD and WAPL/Rad61. Pds5 family 
members promote cohesion establishment during S-phase and 
antagonize cohesin proteolysis during M-phase.20-23 WAPL/Rad61 
promotes cohesin removal early during M phase. WAPL-dependent 
cohesin release occurs prior to and independent from Esp1-directed 
cohesin proteolysis at anaphase onset.24,25 Ctf7 establishes cohe-
sion between nascent sister chromatids during S-phase.26,27 Ctf7 
establishment family members (Ctf7/Eco1/Eso1/Deco/EFO1,2/
ESCO1,2) do not maintain sister pairing nor promote cohesin 
deposition.26-31 Instead, a likely scenario is that these factors cata-
lyze cohesin associations that tether together sister chromatids.11,32 
Ctf7 binds numerous DNA replication factors including the DNA 
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helicase Chl1 (BACH1 homolog), RFCs and PCNA—all of which 
are critical for cohesion establishment.26,33-39 More recent evidence 
reveals that Ctf7p activity can be induced outside of S phase in 
response to DNA double-strand breaks.16,17,40,41

Linking Sister Chromatid Cohesion to Tumorigenesis

Studies from a number of model organisms establish that defects 
in sister chromatid cohesion result in massive chromosome mis-
segregation, aneuploidy and gene mis-expression—all hallmarks of 
cancer progression.8-10 In many ways, the link between sister chro-
matid pairing defects and cancer is conceptually satisfying (Fig. 1). 
Properly paired sister chromatids supply a repair template required 
in response to DNA damage and may further provide structural 
fortification to resist chromosome breakage.7,42 Thus, defects in 
sister chromatid pairing eradicate high-fidelity DNA repair pathways 
and may serve as fragile sites that promote chromosomal transloca-
tions, truncations and subsequent gene mis-expression (as observed 
in BRCA1-deficient cells). Global loss of sister chromatid pairing 
produces whole chromosome duplications via mis-segregation. 
Finally, cohesion factors participate in higher-order heterochromatic 
complex formation. These complexes function as boundary elements 
of transcriptionally repressed domains and may further sequester 
factors important for enhancer-promoter activation, providing for 
additional mechanisms of gene mis-regulation.43

There is now compelling evidence that cohesion is a critical factor 
in many forms of cancer. Human securin (a Pds1-like regulator of 
cohesin dissolution at anaphase onset) is the human proto-oncogene 
pituitary tumor-transforming gene (PTTG). PTTG exhibits tumor 
transforming activity in culture and is highly upregulated in human 
cancer cell lines.44,45 The establishment factor EFO2/ESCO2 is one 
of only ~12 cell cycle control genes that are highly upregulated in 
aggressive melanoma cells.46 WAPL was characterized in drosophila 
as a heteochromatin regulator with subsequent studies revealing a 
role in pre-anaphase cohesin release. WAPL expression correlates 
tightly with oncogenesis in cervical malignancies. NIH3T3 cells 
expressing elevated WAPL levels produced tumors in 100% of 
injected nude mice, identifying WAPL as a potent oncogene.24,25 
Thus, a significant body of evidence links mutations in cohesion 
pathways to a variety of cancers.

Linking BRCA1-Dependent Tumorigenesis to Cohesion

Is there evidence that BRCA1-dependent tumorigenesis oper-
ates through sister chromatid pairing reactions? While speculative, 
numerous studies suggest just such a link.8 For instance, several 
BRCA1-binding partners play critical roles in sister chromatid 
cohesion. In a first example, BRCA1 binds to the DNA helicase 
BACH1 (also called FANCJ and BRIP1) which is required for 
BRCA1-dependent double strand break repair.47-50 In one study, a 
small number of breast cancer patients were found that harbor muta-
tions in BACH1, but not mutations in either BRCA1 or BRCA2. 
This and other studies suggest that loss of BACH1 helicase activity 
is itself sufficient to predispose affected individuals to tumorigen-
esis.49,50 BACH1 mutations pre-dispose affected individuals not only 
to breast and ovarian cancer but also to Fanconi anemia.51 At the 
cellular level, diminished BACH1 function results in chromosome 
aberrations that include inter-sister gaps (localized cohesion defects) 
similar to those found in cells deficient for BRCA1.4,52 Mutations 

in BACH1 homologs such as yeast Chl1 are entirely sufficient to 
produce sister chromatid cohesion defects and aneuploidy.33-35 
Moreover, the BACH1 yeast homolog Chl1 interacts both physically 
and genetically with the cohesion establishment factor Ctf7.33 That 
mutation of a single DNA helicase results in cohesion-related cell 
aneuploidy is confirmed in a number of model organisms.4,33-35,53-55 
Knock-out mice homozygous null for RecQL4 (the helicase respon-
sible for Rothmund-Thomson Syndrome or RTS) recapitulate RTS 
phenotypes including skin abnormalities, skeletal defects, aneuploidy 
and a pre-disposition to cancer. Significantly, cells from recql4-/- mice 
exhibit dramatic cohesion defects—providing a clear and singular 
cohesion-based tumorigenic mechanism.55

Other lines of evidence support the model that BRCA1-dependent 
tumorigenesis may act through sister chromatid pairing reactions. 
BRCA1 binds and functionally interacts with the human DNA repair 
MRN complex comprised of Mre11, Rad50 and Nbs1.56,57 A muta-
tion in any one of the MRX complex component homologs (human 
Nbs1 is termed Xrs2 in yeast) produced significant cohesion defects 
that result in chromosome mis-segregation and aneuploidy.54,58 BLM 
(Bloom syndrome helicase) is another BRCA1-associated component 
that, when mutated, results in hypermutability, elevated rates of 
somatic recombination and predisposition to cancer.56,59 Analyses of 
the yeast homologs of BACH1, BLM and WRN helicases (Werner 
mutations results in premature aging) all confirm that homologs of 
BRCA1-associated DNA helicases play key roles in sister chromatid 
pairing mechanisms.4,33-35,53,54 In combination, BRCA1 associates 
with many factors that function in sister chromatid pairing.

Figure 1. Schematic illustrating chromosome cycle and sister chromatid pair-
ing defects that produce aneuploidy and gene mis-expression. Prototypical 
cell containing two chromosomes (light and dark gray) highlight multiple 
cohesin-based processes. The nucleus (blue) and cell contents are absent 
from subsequent stages of the chromosome cycle for simplicity. (A) Cohesins 
(green rings) become chromatin-associated or deposited prior to DNA 
replication. (B) DNA replication is coupled to sister chromatid pairing activi-
ties—termed cohesion establishment. (C) Assembly of the mitotic spindle 
(spindle microtubules = lines captured by kinetochores = black balls placed 
midway along each chromosome) generates pulling forces across sister chro-
matids that must be resisted by cohesion structures (shown as paired rings). 
(D) Cohesin dissolution marks anaphase onset and allows each chromatid to 
segregate away from its sister and into the newly forming daughter cell (not 
shown). Red arrows indicate defects in any one of the cohesion pathways 
(deposition, maintenance, establishment, regulation) that result in cell aneu-
ploidy, chromosome duplication, fragmentation and gene mis-expression.



Sister chromatid pairing

It is worth speculating that BRCA1-tumorigenesis may involve Ctf7 
family members. First, human BRCA1 participates in complexes that 
contain the DNA helicase BACH1 and RFC subunits and BRCA1 
is recruited to PCNA/RFC foci upon DNA damage.4,49,50,60-62 In 
all model organisms tested to date, Ctf7 exhibits multiple interac-
tions with Chl1 (homolog of human BACH1), PCNA and all RFC 
complexes—including those implicated in DNA repair.26,33,36,37 
Second, BRCA1 is part of CBP/p300 and SWI/SNF chromatin 
remodeling complexes that exhibit acetyltransferase activity.63-65 Ctf7 
family members are all acetyltransferases, lending indirect support 
for a model that this conserved activity may play a role in BRCA1-
dependent functions.28-31,66,67 Third, cells harboring mutations in 
either BRCA1- or EFO/ESCO-related pathways exhibit inter-sister 
gaps and cohesion defects especially along heterochromatic and 
centromeric regions.8,11 That BRCA1 and Ctf7 family members 
share overlapping partners, exhibit similar activities in complex and, 
when mutated, produce aberrant chromosomal phenotypes provide 
for intriguing parallels.

Coming Full Circle—DNA Repair Induces Cohesion

In an unusual twist, recent evidence reveals that a reciprocal 
relationship exists between DNA repair and sister chromatid cohe-
sion. Early evidence indicated that cohesion establishment only 
occurs during S phase.26,27 Subsequent studies indicated that DNA 
double strand breaks re-activate cohesion establishment pathways 
outside of S-phase.16,17 More recently, the Koshland and Sjogren 
labs provided evidence that DNA double strand breaks specifically 
re-activate Ctf7-dependent cohesion establishment activity and that 
this pairing occurs independent of the replication/repair fork.40,41 
DNA damage-induced re-activation of Ctf7 requires Mec1/ATR 
(ataxia telangiectasia and Rad3 related) PI kinase checkpoint 
activity. Thus, a chicken and egg scenario emerges: cohesion is 
required for DNA repair and DNA damage induces new rounds 
of Ctf7-dependent cohesion establishment which in turn promotes 
efficient DNA repair.

Cohesion in Developmental Abnormalities

Sister chromatid pairing reactions are not just cancer-related. 
For instance, mutations in any one of the cohesion-related processes 
(cohesins, deposition, regulators and establishment) produce devel-
opmental manifestations.43 Mutation of either human Scc2/NIPBL 
or Smc1 results in Cornelia de Lange Syndrome.68-70 Cornelia de 
Lange Syndrome (CdLS) presents with developmental defects in 
multiple cell systems that result in heart defects, hearing impair-
ments, microcephaly, missing digits and often severe mental 
retardation. Mutations in cohesion establishment factors such as 
EFO2/ESCO2 result in Roberts Syndrome—a recessive malady 
in which afflicted individuals exhibit severe growth retardation, 
craniofacial abnormalities, mental deficiencies and tetraphocomelia. 
EFO2/ESCO2 mutations also produce the related SC phocomelia 
which mimics thalidomide fetal effects but typically allows survival 
into adulthood.31 Solving the mystery of whether cohesion defects 
will produce developmental abnormalities or tumors probably will 
require elucidating the roles of numerous factors including the 
cell type involved, mutation consequence (loss-of-function versus 
gain-of-function), or timing of mutagenesis (embryogenesis or in 
adult tissue).

Conclusions

In summary, a growing body of evidence suggests that altered 
sister chromatid pairing activities are integral to a number of human 
disease states including developmental abnormalities, pre-mature 
aging and cancer. Moreover, I speculate here that BRCA1 pathways 
are intimately linked to sister chromatid pairing reactions to affect a 
variety of chromosomal phenotypes. Thus, while BRCA1 associates 
with numerous complexes and participates in a number of activities, 
it may be that one underlying mechanism may indeed fit all.
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