Report

Positional analyses of BRCA1-dependent expression in *Saccharomyces cerevisiae*

Robert V. Skibbens,* Danielle N. Ringhoff, Jutta Marzillier, Lynne Cassimeris and Laura Eastman

Lehigh University; Department of Biological Sciences; Bethlehem, Pennsylvania USA

Key words: BRCA1, gene expression, chromosome segregation, aneuploidy, microarray, chromatin remodeling

Mutations in BRCA1 account for a significant proportion of hereditary breast and ovarian cancers, but analysis of BRCA1 function is complicated by pleiotropic effects and binding partners (Pol II holoenzyme and transcription factors, chromatin remodelers, recombination complexes and E3 ligases). In vertebrate cells, efforts to elucidate BRCA1 transcriptional effects have focused on specific genes or restricted portions of the genome-limiting analyses of BRCA1 effects on adjoining DNA sequences and along chromosome lengths. Here, we use microarray analyses on the genetically tractable yeast cell system to elucidate BRCA1-dependent genomewide positional effects on both gene induction and repression. Yeast responses may be of clinical relevance based on findings that BRCA1 severely diminishes yeast growth kinetics but that BRCA1 mutated at sites identified from breast tumors is no longer able to retard yeast cell growth kinetics. Our analysis suggests that BRCA1 acts through both transcription factors to upregulate specific loci and chromatin remodeling complexes to effect global changes in gene expression. BRCA1 also exhibits gene repression activities. Cluster-functional analysis reveals that these repressed factors are required for mitotic stability and provide a novel molecular explanation for the conditional lethality observed between BRCA1 and chromosome segregation genes.

Characteristics of BRCA1-Dependent Gene Upregulation

Mutations in BRCA1 account for a significant proportion of hereditary breast and ovarian cancers.¹ While recent reports have focused on BRCA1-dependent expression effects within specific subsets of genes,^{2,3} the role that BRCA1 plays in both a positional and genome-wide context has yet to be performed. Such an analysis would be greatly simplified in yeast—given that yeast gene nomenclature provides for unambiguous positional and strand utilization cues along the chromosome length.⁴ Importantly, expression of human BRCA1 in budding yeast appears to provide a clinically relevant readout since BRCA1 severely diminishes yeast growth

*Correspondence to: Robert V. Skibbens; Lehigh University; Biological Sciences; 111 Research Drive Room B-217; Biological Sciences; Bethlehem, Pennsylvania 18015 USA; Tel.: 6107586162; Fax: 610.758.4004; Email: rvs3@lehigh.edu

Submitted: 11/04/08; Accepted: 11/10/08

Previously published online as a *Cell Cycle* E-publication: http://www.landesbioscience.com/journals/cc/article/7380 kinetics but BRCA1 mutated at sites identified from breast tumors is no longer able to retard yeast cell growth.^{5,6} In support of this, yeast mutated in *CHL1* (homolog of human BACH1/BRIP1/FANJ DNA helicase that binds BRCA1 and is required for BRCA1-dependent double strand break repair) suppress BRCA1-dependent growth defects.⁷⁻⁹ Thus, BRCA1-targeted pathways are highly conserved in yeast. To capitalize on this conservation of function and to provide a unique positional context for BRCA1 function along the length of yeast chromosomes, we used human-assisted search methods to assess BRCA1 affects on mRNA levels for both individual genes and extended chromatin domains.

Recent reports document that BRCA1 genetically effects both transcription and chromosome segregation pathways in yeast,9-12 the latter of which directly produces aneuploidy when mutated. We decided to focus on the C-terminal BRCT domain of BRCA1 because it is both necessary and sufficient to elicit the yeast small colony phenotype and because of its relevance to cancer progression.^{5,6,10-14} To elucidate BRCA1 effects on gene expression, vector or vector containing the BRCT domain of BRCA1 (herein termed BRCA1) was transformed into wildtype yeast, RNA extracted from log phase yeast grown at either 23° or 30°C and genome-wide changes in expression levels analyzed by microarray hybridization. We limited our analyses to those genes whose expression was altered two-fold or greater. Results show that mRNA levels of 461 genes were altered beyond this threshold in response to BRCA1 at 23°C relative to vector controls: 307 of which were upregulated and 154 which were downregulated (Suppl. Table 1). mRNA levels of 430 genes were altered two-fold or greater by BRCA1 expression at 30°C relative to vector controls: 350 of which were upregulated and 80 of which were downregulated (Suppl. Table 2).

We identified both discrete genes and contiguous multi-gene domains that were significantly upregulated in response to BRCA1 expression. Of 307 upregulated loci (23°C), 35 instances (11%) were identified in which the affected areas encompassed 2 or more adjacent open reading frames. Of 350 upregulated loci (30°C), 38 instances (11%) were identified in which the affected areas encompassed 2 or more adjacent open reading frames. Independent analyses of both data sets revealed instances in which positively affected areas encompassed 4 adjacent open reading frames to span up to 12 kb of contiguous DNA (Suppl. Table 3). Often, one actively transcribed domain was separated from a similarly upregulated domain by only a single-intervening locus. When we allowed for single locus gaps, upregulated regions that encompassed up to 10 loci and spanned over 23 kb were identified (Suppl. Table 4). Under this criterion, a total of 109 genes (roughly 1/3) of all positively affected genes may be attributable to global changes in gene expression. In summary, these results provide novel information that BRCA1 may associate with both yeast transcription factors and chromatin remodeling complexes, similar to those interactions observed in human cells, and that BRCA1-activated complexes elicit global and extensive increases in *Saccharomyces cerevisiae* mRNA levels (Suppl. Fig. 1).

Characteristics of BRCA1-Dependent Gene Repression

In human cells, BRCA1 blocks the assembly of pre-initiation transcription complexes—providing one mechanism of gene repression.¹² As noted above, 154 of the 461 BRCA-affected loci were downregulated 2-fold or greater (23°C),

revealing a role for BRCA1 in yeast gene repression. This data set also provided an opportunity to quantify extended regions of BRCA1-dependent repressed domains. Thus, we tabulated by hand all incidences in which repressed genes occurred immediately adjacent to one another. 10 instances were identified that encompassed a total of 20 genes (13% of total repressed genes) in which one repressed gene was immediately juxtaposed to another repressed gene (Suppl. Table 5). Independent analyses (30°C) identified two such instances, involving a total of four loci (5%), in which repressed genes were immediately juxtaposed (Suppl. Table 6). No instances of three adjacent repressed loci were observed in either data set. In combination, these findings reveal that while low incidences of multi-gene repression can occur, the role for BRCA1 in repression predominantly occurs in a locus-specific manner and, once established, infrequently spreads to repress adjoining domains.

We next characterized the boundaries between repressed and upregulated BRCA1-affected genes. Of the 5749 verified and expressed yeast genes,² genes unaffected by BRCA1 expression (5442) outnumber genes upregulated by BRCA1 (307) roughly 20:1. Thus, the predicted incidence of finding a downregulated locus situated next to an upregulated locus would be at most 5%. We further reasoned that since approximately 1/3 of genes upregulated by BRCA1 appear to occur through a global-acting mechanism, the frequency of finding adjoining but oppositely regulated loci would decrease below 2%. In contrast, however, 18 examples (12%) of the 154 BRCA1-dependent repressed genes (23°C) were positioned immediately adjacent to an upregulated gene (Suppl. Table 7). Similarly, 8 examples (10%) of 80 repressed genes (30°C) were identified in which a downregulated gene was next to an upregulated gene (Suppl. Table 8). In combination, these results reveal that a surprisingly high percentage of repressed genes are situated immediately adjacent to upregulated genes. The boundary elements that establish and then maintain these transcriptional states remain

Figure 1. The combination of genetic and microarray analyses indicate that BRCA1 may contribute to cell aneuploidy and chromosomal aberrations via a two-hit mechanism. BRCA1 drives inappropriate elevated expression of *CTF13*, adversely effecting kinetochore assembly (revealed in the context of COMA kinetochore mutants such as *ctf19*). BRCA1 reduces expression of genes required for mitotic stability (numerous B-type cyclins, cohesin factor *MCD1/SCC1* and spindle pole component *SPC97*)—all of which are required for high fidelity chromosome segregation.

an important but as yet uncharacterized facet of BRCA1-dependent gene regulation.

To better understand these transition states, we tested whether the ability to juxtapose oppositely regulated genes depended on DNA strand context. Out of the 18 adjacent but oppositely affected gene pairs, five were comprised of gene pairs situated on the Crick strand (C), four were comprised of gene pairs situated on the Watson (W) strand and nine involved gene pairs in which one was located on the Watson while the other was located on the Crick strand (including both $C \rightarrow W$ and $W \rightarrow C$ orientations). Thus, BRCA1-dependent transition states between adjacent but oppositely affected genes appear to occur independent of strand bias (data not shown).

Functional-Cluster Analyses of BRCA1-Affected Genes

BRCA1 is conditionally lethal when expressed in yeast strains mutated in various kinetochore or cohesion factors.⁹ Thus, the second major goal of this study was to elucidate the molecular pathways through which BRCA1 expression promotes lethality in these mutants. Venn analysis was performed to identify, out of the 461 genes (23°C) and 430 genes (30°C) altered by BRCA1 expression, a high confidence level of genes whose temperature-independent regulation depended on BRCA1. The resulting analysis produced a list of 222 genes whose expression was uniformly altered 2-fold or greater in a temperature-independent manner. Of these, 183 genes were upregulated (Table 1) and 39 genes were downregulated (Table 2) in response to BRCA1 expression. For each category, we clustered together genes involved in similar pathways or function.

Repressed genes. BRCA1-deficient human cells exhibit dramatic chromosome segregation defects, inter-sister chromatid gaps and translocations.^{1,15} Thus, we first wanted to uncover how BRCA1 might affect pathways that contribute to conditional lethality in yeast chromosome segregation mutants. Of the 39 downregulated loci (Table 2), 13 are termed dubious open reading frames or

Table 1 BRCA-dependent upregulation at both 23 $^\circ$ and 30 $^\circ$

Fold change 23°	Up	Fold change 30°	Up	Systematic	Common	Fold change 23°	Up	Fold change 30°	Up	Systematic	Common
3.4433699	Up	2.156699	Up	YMR056C	AAC1	2.7209184	Up	2.324241	Up	YHR096C	HXT5
2.840843	Up	2.936136	Up	YJR155W	AAD10	3.2667696	Up	3.6192696	Up	YJL219W	HXT9
3.4504972	Up	3.541029	Up	YOL165C	AAD15	2.1079352	Up	2.2038836	Up	YMR108W	ILV2
2.2339227	Up	2.7618916	Up	YER045C	ACA1	3.0951784	Up	8.414132	Up	YKL217W	JEN 1
2.1536045	Up	2.8568575	Up	YFL055W	AGP3	2.4908004	Up	2.6344728	Up	YGL009C	LEU1
3.3267636	Up	4.341087	Up	YDR242W	AMD2	2.373958	Up	2.3708763	Up	YNL104C	LEU4
2.7140546	Up	2.2674854	Up	YGL156W	AMS1	2.5583594	Up	2.961486	Up	YIR034C	LYS 1
2.1114006	Up	2.661742	Up	YOL058W	ARG1	2.2018661	Up	6.01615	Up	YGR292W	MAL12
3.0350552	Up	2.6912796	Up	YML116W	ATR 1	2.286683	Up	6.6888905	Up	YBR299W	MAL32
2.1226618	Up	2.1849225	Up	YOR011W	AUS1	3.6775527	Up	2.285604	Up	YKR069W	MET 1
4.675042	, Up	4.2784038	, Up	YNR058W	BIO3	3.3087142	, Up	3.3314137	, Up	YFR030W	MET10
3.1359777	up'	2.564124	' Up	YNR057C	BIO4	3.7851515	Up	3.1707487	' Up	YPR167C	MET16
4.0968795	u u	3.8620148	u u	YNR056C	BIO5	2.9498475	' Up	2.9523308	u u	YLR303W	MET17
2.5255096	Up	2.0384958	Up	YIR025C	BNA1	12,952447	Up	6.8508286	Up	YNL277W	MET2
7.379563	Up	8.30086	Up	YLR267W	BOP2	4.7936215	Up	3.8631165	Up	YIR017C	MET28
2.327485	Up	3.3769863	Up	YML042W	CAT2	2.9084132	Up	2.3667684	Up	YDR253C	MET32
4.509865	Un	3,985083	Un	YPR001W	CIT3	3.1603968	Un	2.10447.53	Un	YNI036W	NCF103
2.0578852	Un	3.9770317	Un	YHI048W	COS8	5.837712	Un	11.026299	Un	YDI085W	NDF2
4 398049	Un	2 9582012	Un	YOR100C	CRC1	2 7281747	Un	2 2748764	Un	YHR124W	NDT80
5 347875	Un	2 6645525	Un	YMR094W	CTE13	2 418558	Un	2 8711798	Un	YII 164C	NIT1
7 80064	Un	11 025473	Un	YMI054C	CYB2	2.4033759	Un	2 2632685	Un	YKI120W	OAC1
2 5044303	Un	3 0635834	Un	YIR027C		3 7699878	Un	1 3708344	Un	YPR19/C	OPT2
2.5044505	Un	5 6318183	Un	YIRO28W		2 0619988	Un	2 2016145	Un	YALO64W/	ORE-VALOGAW
1 1813516	Un	1 3695993	Un			17190886	Un	5 521752	Un	YRIO48W/	
2 1668363	Un	2 0030582	Up			4.7170000	Un	5 551156	Un		
6 571231	Un	7 6273603	Up		וחום	4.0700700	Un	5 0880173	Un		
2 6701651	Up	2 0592175	Up	VID137C	ECM17	4.4204003	Un	6 7205485	Un		
2.0771031	Up	2.0572175	Up	VMPOAC	ECM40	2 102048	Up	1 37/0805	Up		
2.2003322	Up	2.3304734	Up	VEDUSSIN		2.172040	Up	2 0866682	Up		
2.4100193	Up	2 526058	Up		EDD 1	19 36140	Up	2.7000003 5 1009091	Up		
2 7426044	Up	2.330930	Up			2 1 2 2 0 4 0 2	Up	J.4770704	Up		
3.7430044 2.240241	Up	2.9520004	Up	VID277C		2.1239003	Up	2.0114303	Up		
2.209241	Up	2.2003095	Up	YIL221C		2.3349004	Up	2.244031	Up	YELOSZC	
2.2049001	υр	2.2530105	υр		F3FZ	2.150255	υр	2.0/03093	Ор		ORF: TELO3/C
7.037/90	υр	7.1114334	υр		FTV2	3.0552040	υр	0.29300/0	Ор		
70.735115	υр	14.4041395	υр		GALI	2.08/803	υр	2./93/88	Up	YELOFONA	
70.755115	υр	52 74245	υр		GALIO	3.740100	υр	10.30//20	Ор		
/8./3131	υр	53./6265	υр		GALZ	2.7145524	υр	0.03/1085	Ор		
101.30110	Up	93.95381	Up	YPL248C	GAL4	3.2444153	Up	2.1392963	Up	YFRUIZW-A	
30.34818	Up	40.29145	Up	YBRUISC	GAL/	3./236464	Up	3.2456906	Up	YGL024VV	ORF: YGL024VV
5.330396	Up	4.093/595	Up	YDR019C	GCVI	2.2985814	Up	2.81/996/	Up	YGLUSYW	ORF:YGL059W
2.5090592	Up	2.68212/	Up	YPR184VV	GDBT	2.628/34	Up	3.4248686	Up	YGLII/W	ORF:YGLII/W
4.222917	Up	3.8256583	Up	YALU62VV	GDH3	3.69/2415	Up	4.12001	Up	YGL230C	ORF:YGL230C
2.98/92/2	Up	8.363512	Up	YCR098C	GILI	3.283544	Up	2.5214186	Up	YGR043C	ORF:YGR043C
2.6940/5	Up	2.644/406	Up	YDL223C	HRII	2.30/301	Up	2.4/29/1	Up	YGR050C	OKF:YGR050C
2./69//83	Up	2.462242	Up	YOR202W	HIS3	4.205944	Up	5.055826	Up	YGRIIOW	OKF:YGRIIOW
2.4303/27	Up	2.9/359/5	Up	YCL030C	HIS4	3./6986/	Up	3.490024	Up	YGRI6IC	OKF:YGR161C
2./684693	Up	2.5967464	Up	YIL116W	HIS5	2.0598817	Up	2.2321963	Up	YHLO44W	ORF:YHL044W
3.793316	Up	5.640973	Up	YFL011W	HXT10	4.1469936	Up	2.850817	Up	YHR029C	ORF:YHR029C

Table 1 BRCA-dependent upregulation at both 23° and 30°

Fold change 23°	Up	Fold change 30°	Up	Systematic	Common	Fold change 23°	Up	Fold change 30°	Up	Systematic	Common
2.4945712	Up	2.215926	Up	YHRO48W	ORF:YHR048W	2.7551093	Up	2.236529	Up	YOR130C	ORT1
2.241283	Up	3.735952	Up	YHR209W	ORF:YHR209W	2.897362	Up	2.426087	Up	YKR097W	PCK1
2.6221356	Up	3.084134	Up	YIL121W	ORF:YIL121W	3.158231	Up	3.0981598	Up	YHR071W	PCL5
3.1692755	Up	2.6197135	Up	YIL165C	ORF:YIL165C	2.2268972	Up	4.8464212	Up	YPR002W	PDH1
2.2139091	Up	2.1267798	Up	YIL172C	ORF:YIL172C	3.7822063	Up	7.592838	Up	YBR296C	PHO89
2.5514972	Up	5.3436313	Up	YIR043C	ORF:YIR043C	3.041848	Up	8.434918	Up	YKL163W	PIR3
3.59348	Up	2.4726734	Up	YJL045W	ORF:YJL045W	3.034698	Up	4.1046576	Up	YIL160C	POT1
5.3583336	Up	8.838197	Up	YJL160C	ORF:YJL160C	3.4939804	Up	4.4523406	Up	YIL117C	PRM5
3.1550093	Up	3.1441882	Up	YJL213W	ORF:YJL213W	2.0202703	Up	2.4520059	Up	YGL062W	PYC1
2.1492753	Up	3.9401343	Up	YKL071W	ORF:YKL071W	6.2763557	Up	3.4175785	Up	YGL158W	RCK1
6.108961	Up	6.504658	Up	YKL107W	ORF:YKL107W	3.5144181	Up	2.9104614	Up	YCR106W	RDS1
3.2176416	Up	3.032829	Up	YKL162C-A	ORF:YKL162C-A	4.28649	Up	5.964159	Up	YBR050C	REG2
2.549582	Up	2.4074943	Up	YKR046C	ORF:YKR046C	2.9678848	Up	2.7935257	Up	YBR256C	RIB5
2.3823843	Up	3.5281072	Up	YLR054C	ORF:YLR054C	2.1734767	Up	2.2412622	Up	YGL224C	SDT1
2.1908948	Up	3.9726424	Up	YLR194C	ORF:YLR194C	2.8915923	Up	4.9005575	Up	YAL067C	SEO 1
5.400229	Up	9.768513	Up	YLR311C	ORF:YLR311C	2.2840748	Up	4.980292	Up	YJL089W	SIP4
4.7420163	Up	4.786415	Up	YLR312C	ORF:YLR312C	8.228353	Up	6.9054456	Up	YMR095C	SNO1
2.472059	Up	2.5937066	Up	YMR007W	ORF:YMR007W	7.2946773	Up	5.99051	Up	YMR096W	SNZ1
2.1991053	Up	2.0030406	Up	YMR057C	ORF:YMR057C	2.3738842	Up	2.5341263	Up	YNL012W	SPO 1
22.084738	Up	15.958245	Up	YMR107W	ORF:YMR107W	2.8698087	Up	2.3937123	Up	YMR017W	SPO20
3.4861953	Up	11.092461	Up	YMR118C	ORF:YMR118C	2.821707	Up	3.10122	Up	YOL091W	SPO21
4.8684373	Up	3.8995376	Up	YMR322C	ORF:YMR322C	2.4767158	Up	2.5756717	Up	YIL073C	SPO22
2.6965623	Up	5.0872335	Up	YMR323W	ORF:YMR323W	2.4217575	Up	3.1003695	Up	YPR007C	SPO69
2.0763237	Up	2.021945	Up	YNL114C	ORF:YNL114C	3.9720883	Up	3.8201165	Up	YKL218C	SRY1
4.7190886	Up	5.7443166	Up	YNL335W	ORF:YNL335W	3.1808107	Up	3.0908365	Up	YPL092W	SSU1
2.286996	Up	4.8582363	Up	YNR064C	ORF:YNR064C	2.3064563	Up	2.933995	Up	YKL178C	STE3
2.2116995	Up	5.510426	Up	YNR066C	ORF:YNR066C	2.6517718	Up	3.5276618	Up	YJR130C	STR2
2.7544036	Up	10.333814	Up	YNR073C	ORF:YNR073C	4.557136	Up	4.7047777	Up	YGL184C	STR3
2.2676046	Up	3.1759288	Up	YOL047C	ORF:YOL047C	24.49464	Up	10.887441	Up	YBR294W	SUL1
2.622635	Up	2.360953	Up	YOL157C	ORF:YOL157C	4.3167863	Up	2.0504751	Up	YLR092W	SUL2
2.3561645	Up	2.3535578	Up	YOL159C-A	ORF:YOL159C-A	5.3514595	Up	7.343781	Up	YJR156C	THI11
2.809437	Up	4.3108993	Up	YOL162W	ORF:YOL162W	4.995868	Up	5.263618	Up	YNL332W	THI12
2.8775344	Up	4.160822	Up	YOL163W	ORF:YOL163W	7.22231	Up	5.4404936	Up	YDL244W	THI13
2.7927597	Up	5.7056117	Up	YOL166C	ORF:YOL166C	5.0305867	Up	5.6415343	Up	YFL058W	THI5
3.3838398	Up	2.3424292	Up	YOR203W	ORF:YOR203W	3.988496	Up	4.3984036	Up	YER175C	TMT1
3.9368253	Up	2.5369966	Up	YOR289W	ORF:YOR289W	2.9507484	Up	3.4170206	Up	YDR059C	UBC5
3.0312536	Up	2.4283605	Up	YOR338W	ORF:YOR338W	2.2585113	Up	2.0042167	Up	YLL039C	UBI4
2.6611648	Up	3.1574056	Up	YOR345C	ORF:YOR345C	2.1997151	Up	2.295983	Up	YDL170W	UGA3
13.983435	Up	8.293946	Up	YPL033C	ORF:YPL033C	2.5031931	Up	2.1808121	Up	YGR065C	VHT1
2.1662319	Up	2.6543095	Up	YPL110C	ORF:YPL110C	6.214656	Up	2.4561589	Up	YAR035W	YAT1
4.4853578	Up	3.4309742	Up	YPL280W	ORF:YPL280W	4.987914	Up	3.2750573	Up	YER024W	YAT2
2.6383016	Up	3.1795871	Up	YPR015C	ORF:YPR015C	2.3179839	Up	5.0609155	Up	YNR065C	YSN1
2.6498392	Up	2.718381	Up	YPR061C	ORF:YPR061C	2.4574826	Up	2.6144147	Up	YBR046C	ZTA 1
3.1841009	Up	3.0100422	Up	YPR077C	ORF:YPR077C						

Genes upregulated 2-fold or greater in response to BRCA1 expression at both 23°C (column A) and at 30°C (column B). To facilitate cluster-function analyses, genes are presented alphabetically based on standard gene nomenclature (column F). Systematic gene nomenclature is also provided (column E).

Table 2	RPCA1_do	nondont	ronrossion	at 23º	and	300
lable Z	DKCAI-de	pendent	repression	αι Ζο	ana	30

Fold change 23°	Down	Fold change 30°	Down	Systematic	Common		
2.6663523	Dn	2.5401378	Dn	YNL141W	AAH1		
2.348434	Dn	2.1471424	Dn	YNR044W	AGA1		
2.1432571	Dn	2.8746247	Dn	YPLO61W	ALD6		
3.9368253	Dn	3.039458	Dn	YGR177C	ATF2		
2.205411	Dn	3.4943202	Dn	YGR108W	CLB1		
2.640706	Dn	2.4160028	Dn	YPR119W	CLB2		
2.5200815	Dn	5.1660275	Dn	YGR109C	CLB6		
2.0592175	Dn	2.0186563	Dn	YMR215W	GAS3		
2.0306427	Dn	2.456279	Dn	YCL036W	GFD2		
2.2512314	Dn	2.1754	Dn	YBR244W	GPX2		
2.209742	Dn	2.8485	Dn	YOL151W	GRE2		
9.850322	Dn	6.3388696	Dn	YOR032C	HMS1		
3.0393798	Dn	3.3753817	Dn	YDL227C	HO		
2.352046	Dn	2.2479405	Dn	YMR032W	HOF1		
18.128693	Dn	12.658796	Dn	YJL153C	INO1		
2.695608	Dn	2.2437422	Dn	YDL003W	MCD1		
3.2499297	Dn	2.2911003	Dn	YAR047C	ORF:YAR047C		
4.06215	Dn	2.2012846	Dn	YDL038C	ORF:YDL038C		
2.295059	Dn	3.2390332	Dn	YDR222W	ORF:YDR222W		
2.3097382	Dn	2.936668	Dn	YER053C-A	ORF:YER053C-A		
6.423311	Dn	2.7086365	Dn	YGR052W	ORF:YGR052W		
2.2692592	Dn	2.2693837	Dn	YHL026C	ORF:YHL026C		
2.037372	Dn	2.1799862	Dn	YIL158W	ORF:YIL158W		
2.5801733	Dn	2.7344072	Dn	YMR088C	ORF:YMR088C		
2.198507	Dn	2.792885	Dn	YNL134C	ORF:YNL134C		
2.718264	Dn	2.8701663	Dn	YNL194C	ORF:YNL194C		
2.1698606	Dn	2.656128	Dn	YNR009W	ORF:YNR009W		
3.4301567	Dn	3.1999304	Dn	YOR315W	ORF:YOR315W		
3.8612068	Dn	2.2171853	Dn	YPL095C	ORF:YPL095C		
2.0609047	Dn	2.051279	Dn	YHR215W	PHO12		
2.4203475	Dn	2.2458477	Dn	YBR092C	PHO3		
5.1002965	Dn	4.6914625	Dn	YMR006C	PLB2		
2.530907	Dn	2.1181576	Dn	YDR501W	PLM2		
2.8532867	Dn	2.4002085	Dn	YNL301C	RPL18B		
2.2034757	Dn	2.053107	Dn	YHR172W	SPC97		
3.815995	Dn	3.740144	Dn	YOR313C	SPS4		
2.6739023	Dn	2.9553387	Dn	YHL028W	WSC4		
3.9242835	Dn	7.133377	Dn	YNL160W	YGP1		
2.2180047	Dn	5.0412126	Dn	YGL255W	ZRT1		

Genes downregulated 2-fold or greater in response to BRCA1 expression at both 23°C and 30°C. Column designations are identical to Table 1.

un-annotated and thus are not considered further.⁴ Importantly, functional-cluster analysis revealed that the largest class of genes downregulated by BRCA1 (six of the remaining 26) play essential roles in mitosis. *CLB1*, *CLB2* and *CLB6* (all three encode different B-type cyclins) were identified as well as *MCD1/SCC1* (encoding the key structural sister chromatid cohesion factor). We note that BRCA1 ectopic expression in colon cancer cells similarly showed significant

reduction of B-type cyclin and cohesion regulators^{17,18}—attesting to the efficacy of the current approach. Two other factors downregulated in this class are SPC97 (encodes a spindle pole body component associated with microtubule nucleation)19 and HOF1 (encodes a cytokinesis regulatory factor).²⁰ While speculative, a plausible model is that BRCA1-expressing yeast cells are deficient in maintaining both a mitotic state and sister chromatid identity-coupling BRCA1 to aneuploidy pathways (Fig. 1). That these yeast pathways are conserved through evolution and of clinical relevance is supported by findings in vertebrate cell studies that BRCA1 regulates numerous aspects of mitosis that include kinetochore, spindle checkpoint, cyclin-dependent kinase, cohesion and cytokinesis pathways.¹⁶⁻¹⁸ In summary, BRCA1 represses a suite of mitotic regulators and structural components that are conserved through evolution, suggesting that the chromosome aberrations and aneuploidy observed in breast/ ovarian cancer cells may arise in part through defects in chromosome segregation pathways.

The remaining 20 downregulated genes fall into 6 other functional clusters (Fig. 2), four of which include phospholipid metabolism and phosphate utilization factors (*INO1*, *PHO3*, *PHO12* and *PBL2*), stress responders (*ALD6*, *ATF2*, *GPX2* and *GRE2*), cell wall components and plasma membrane transporter (*AGA1*, *GAS3*, *YPG1* and *ZRT1*) and ribosome subunits and translation factors (*RPL18B*, *WSC4* and *GFD2*). The fifth cluster is comprised of transcription regulators (*HMS1* and *PLMS2*). This latter functional-cluster contains a surprisingly small number of genes, given prior studies that mutations in transcriptional responders suppress BRCA1-induced lethality.^{10,11} The sixth cluster is comprised of orphan genes of unrelated functions (*SPS4*, *HO* and *AAH1*).

Upregulated genes. We next performed a functional-cluster analysis on the 183 genes that were upregulated in response to BRCA1 (Table 1). 70 un-annotated loci (and an additional seven genes for which only putative or implied functions exist) were removed from the data set. Functional-cluster analysis of the remaining 106 genes revealed that only a single chromosome segregation gene-encoding the kinetochore factor Ctf13p, was upregulated in response to BRCA1. This observation couples together previously disparate reports that (1) elevated levels of CTF13 are conditionally lethal in ctf19 mutant strains and (2) BRCA1 expression is conditionally lethal in strains mutated in COMA kinetochore components including Ctf19p.9,21,22 Since kinetochore assembly is uniquely sensitive to increased CTF13 dosage, CTF13 upregulation by BRCA1 accounts for the conditional lethality of BRCA1 in ctf19 mutants (Fig. 1)-validating the current study and providing a genetically closed loop of BRCA1 function in yeast through microarray analyses. From these and other results, we posit a two-hit mechanism by which BRCA1 contributes to cell aneuploidy: BRCA1 may drive inappropriate expression of highly dosage-sensitive kinetochore factors and does so in the context of reduced mitotic genes that include B-type cyclins (CLBs) and cohesion factors (MCD1/SCC1).

Of further interest are the roughly eight genes involved in meiosis and sporulation (including *SPO1*, *SPO20-22* and *SPO69*), suggesting that BRCA1 expression may inappropriately activate recombination or synapsis pathways that contribute to aneuploidy in cancer cells. The bulk of genes upregulated by BRCA1 function either as permeases/transporters (14 loci) or related biosynthetic pathways (59 loci). In many cases, multiple members of a single

Figure 2. Schematic highlighting cluster-function analyses of genes downregulated in response to BRCA1. Cluster defined as 'other' not shown. See text for details.

pathway were identified (*BIO3-BIO5*; *GAL1*, *GAL2*, *GAL4*, *GAL7*, and *GAL10*; *HIS3-HIS5*; *THI5*, *THI11-13* and *MET1*, *MET2*, *MET10*, *MET16*, *MET17*, *MET28* and *MET32*). Our analyses also revealed 13 loci that contribute to mitochondrial function—which may contribute to the small (petite-like) colony phenotype observed in BRCA1-expressing cells.^{5,6} We note that many mitochondrial genes are also regulated by BRCA1 in vertebrate cells, while the extent that these genes effect apoptotic responses remains unclear.^{17,23} Surprisingly, very few upregulated genes (5 loci) could be classified as transcriptional regulators or in modifying transcript stability. Thus, the BRCA1 affects observed in yeast most likely occur directly through interactions with transcription factors and chromatin remodelers—as opposed to BRCA1 upregulation of transcription factors that contribute secondary and thus indirect effects on gene expression.

In summary, the current study addresses key and novel aspects of BRCA1 function in a genetically amenable and conserved response system. Positional analyses made accessible by yeast gene nomenclature illustrates that both individual loci and large and contiguous multi-loci DNA tracts are positively upregulated in response to BRCA1. In contrast, few adjacent genes are downregulated in tandem, suggesting that BRCA1-dependent transcriptional repression in yeast occurs predominantly (but not exclusively) in a gene-specific fashion. We also found that many more than predicted repressed genes are situated immediately adjacent to upregulated genes. Yeast thus provides a powerful avenue to pursue further the chromatin basis of these transition zones.

Labor-intensive vertebrate cell studies previously demonstrated that BRCA1 alters the expression of mitotic components including

kinetochore, checkpoint, CDK and cohesion factors.¹ The current study reveals that BRCA1 affects identical pathways in yeast. Furthermore, our data show that the kinetochore-encoding locus *CTF13* was uniquely upregulated in response to BRCA1. Kinetochore assembly in key mutant backgrounds is highly sensitive to elevated levels of Ctf13p and provides a molecular explanation regarding the conditionally lethality of BRCA1 in kinetochore COMA mutant cells.⁹ This finding raises the possibility that inappropriate BRCA1 expression in human cells may similarly induce elevated levels of dosage-critical factors and contribute to aberrant chromosome structures observed in breast cancer cells.

Experimental Procedures

10 ml of log growth cultures harboring vector alone or vector harboring BRCA1 were harvested by centrifugation and RNA extracted from the resulting pellets using either hot phenol or RNeasy (Qiagen) procedures.²⁴ In all cases, RNA quality was first assessed by A240/A260 ratio (Nanodrop) and further validated by Agilent 2100 Bioanalyzer. Hybridized one-color samples were prepared using Agilent Yeast Oligo Microarrays (V2) 4X44k format (G2519F), which includes >6,200 ORFs with a total of 45,018 features of 60-mer controls and gene probes, according to Agilent instructions and using Agilent reagents. Paired comparisons were made between Control-23°C and BRCA1-23°C and between Control-30°C and BRCA1-30°C RNA extracts. BRCA1 effects on yeast cell growth is temperature independent.⁹

One-color microarrays were scanned with an Agilent Microarray Scanner System, which generated the TIFF images of low and high intensity scans utilized by Agilent Feature Extraction Software (v9.5). Feature Extraction processing of fluorescent data corrected signals for background noise, foreground intensities, positive and negative spot controls, background subtraction and signal normalization. Tab delimited text files generated for each of the four experimental arrays were then analyzed using Agilent Technologies software GeneSpring GX (v9.0.5). Data were processed in GeneSpring GX (v9.0.5) by first filtering on expression intensities to retain features within the 20.0 to 100.0 percentile range followed by filtering on flags for features either present or marginal in at least one of the two arrays juxtaposed. A fold change threshold of 2.0 was imposed for each pairing. During final manuscript preparations, version GeneSpring (v9.5) was released. Venn re-analyses of our data sets using this updated software identified an additional 54 genes (primarily un-annotated ORFs) common to all data sets with only minor modifications to identified genes.

Acknowledgements

The authors thank the Cassbens lab group and Dr. Kerry Bloom for comments and Dr. Ken Belanger for sharing of reagents. This work was supported by an award to R.V.S. from the Susan G. Komen for the Cure Foundation (BCTR0707708) and to L.C. from the National Institutes of Health (GM058025). Any opinions, conclusions or recommendations are those of the authors and do not necessarily reflect the views of either Komen for the Cure or N.I.H.

Note

Supplementary materials can be found at: www.landesbioscience.com/supplement/ SkibbensCC7-24-Sup.pdf

References

- Murray MM, Mullan PB, Harkin DP. Role played by BRCA1 in transcriptional regulation in response to therapy. Biochem Soc Trans 2007; 35:1342-6.
- Aiyar SE, Cho H, Lee J, Li R. Concerted transcriptional regulation by BRCA1 and COBRA1 in breast cancer cells. Int J Biol Sci 2007; 3:486-92.
- Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE, et al. Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 2007; 99:1683-94.
- 4. Saccharomyces Genome Database: www.yeastgenome.org.
- Humphrey JS, Salim A, Erdos MR, Collins FS, Brody LC, Klausner RD. Human BRCA1 inhibits growth in yeast: Potential use in diagnostic testing. Proc Nat Acad Sci 1997; 94:5820-5.
- Coyne RS, McDonald HB, Edgemon K, Brody LC. Functional characterization of BRCA1 sequence variants using a yeast small colony phenotype assay. Cancer Biol Ther 2004; 3:453-7.
- Cantor SB, Bell DW, Ganesan S, Kass EM, Drapkin R, Grossman S, et al. BACH1, a novel helicase-like protein, interacts directly with BRCA1 and contributes to its DNA repair function. Cell 2001; 105:149-60.
- Skibbens RV. Chl1p, a DNA helicase-like protein in budding yeast, functions in sister chromatid cohesion. Genetics 2004; 166:33-42.
- Skibbens RV, Sie C, Eastman L. Role of chromosome segregation genes in BRCA1dependent lethality. Cell Cycle 2008; 7:1-2.
- Westmoreland TJ, Olson JA, Saito WY, Huper G, Marks JR, Bennett CB. DHH1 regulates the G₁/S-checkpoint following DNA damage or BRCA1 expression in yeast. J Surg Res 2003; 113:62-73.
- Bennett CB, Westmoreland TJ, Verrier CS, Blanchette CAB, Sabin TL, Phatnani P, et al. Yeast screens identify the RNA polymeriase II CTD and SPT5 as relevant targets of BRCA1 interaction. PLoS ONE 2008; 1:1448.
- Horwitz AA, Afar EB, Heine GF, Shi Y, Parvin JD. A mechanism for transcriptional repression dependent on the BRCA1 E3 ubiquitin ligase. Proc Nat Acad Sci 2007; 104:6614-9.
- Gough CA, Gojobori T, Imanishi T. Cancer-related mutations in BRCA1-BRCT cause long-range structural changes in protein-protein binding sites: a molecular dynamics study. Proteins 2007; 66:69-86.
- Tischkowitz M, Hamel N, Carvalho MA, Birrane G, Soni A, van Beers EH, et al. Pathogenicity of the BRCA1 missense variant M1775K is determined by the disruption of the BRCT phosphopeptide-binding pocket: a multi-modal approach. Eur J Hum Genet 2008; 16:820-32.
- Skibbens RV. Cell biology of cancer: BRCA1 and sister chromatid pairing reactions? Cell Cycle 2008; 7:449-52.

- Wang R-H, Yu H, Deng C-X. A requirement for breast-cancer-associated gene 1 (BRCA1) in the spindle checkpoint. Proc Nat Acad Sci 2004; 101:17108-13.
- Bae I, Rih JK, Kim HJ, Kang HJ, Haddad B, Kirilyuk A, Fan S, Avantaggiati ML, Rosen EM. BRCA1 regulates gene expression for orderly mitotic progression. Cell Cycle 2005; 4:1641-66.
- MacLachlan TK, Somasundaram K, Sgagias M, Shifman Y, Muschel RJ, Cowan KH, El-Deiry WS. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J Biol Chem 2000; 275:2777-85.
- Knop M, Pereira G, Geissler S, Grein K, Schiebel E. The spindle pole body component Spc97p interacts with the gamma-tubulin of *Saccharomyces cerevisiae* and functions in microtubule organization and spindle pole body duplication. EMBO 1997; 16:1550-64.
- Vallen EA, Caviston J, Bi E. Roles of Hof1p, Bni1p, Bnr1p and myo1p in cytokinesis in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:593-611.
- Hyland KM, Kingsbury J, Koshland D, Hieter P. Ctf19p: A novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J Cell Biol 1999; 145:15-28.
- 22. De Wulf P, McAinsh AD, Sorger PK. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev 2003; 17:2902-21.
- 23. Borst P, Jonkers J, Rottenberg. What makes tumors multidrug resistant? Cell Cycle 2007; 22:2782-7.
- Schmitt ME, Brown TA, Trumpower BL. A rapid and simple method for preparation of RNA from Saccharomyces cerevisae. Nuc Acids Res 1990; 18:3091-2.