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Sticking a fork in cohesin – it’s not
done yet!
Robert V. Skibbens

Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA

To identify the products of chromosome replication
(termed sister chromatids) from S-phase through
M-phase of the cell cycle, each sister pair becomes
tethered together by specialized protein complexes
termed cohesins. To participate in sister tethering reac-
tions, chromatin-bound cohesins become modified by
establishment factors that function during S-phase and
bind to DNA replication-fork components. Early models
posited that establishment factors might move with
replication forks, but that fork progression takes place
independently of cohesion pathways. Recent studies
now suggest that progression of the replication fork
and/or S-phase are slowed in cohesion-deficient cells.
These findings have led to speculations that cohesin
ring-like structures normally hinder fork progression
but coordinate origin firing during replication. Neither
model, however, fully explains the diverse effects of
cohesion mutation on replication kinetics. I discuss
these challenges and then offer alternative views that
include cohesin-independent mechanisms for replica-
tion-fork destabilization and transcription-based effects
on S-phase progression.

Sister chromatid tethering reactions require cohesins,
deposition complexes and establishment factors
The viability of cell progeny requires that each chromo-
some is faithfully replicated and that the resulting sister
chromatids are segregated with high fidelity, ensuring that
each newly forming daughter cell receives a genetic com-
plement identical to that of the parent cell. The temporal
separation of the DNA synthesis phase (S-phase) from the
sister chromatid segregation phase (M-phase or mitosis)
requires cells to identify chromatids as sisters throughout
this interval. Identity is achieved and maintained through
the combined activities of several complexes: cohesins,
deposition complexes and establishment factors [1]. Cohe-
sins tether together sister chromatids from early S-phase
until anaphase onset and thus maintain identity over time.
Deposition complexes load cohesins onto chromatin, but
deposition is not sufficient to tether sisters together. Es-
tablishment factors must first convert chromatin-associat-
ed cohesins into a tethering-competent state.

Numerous studies reveal that the establishment of
cohesion (Glossary) may be intimately coupled to DNA
replication in unperturbed cells. Establishment factors
function during S-phase and physically interact with nu-
merous DNA replication factor components [2]. Despite the

preponderance of findings documenting that establish-
ment may be intimately linked to replication, little if
any evidence over the last decade suggests that cohesion
plays a role in replication-fork progression. Recent human
cell studies, however, suggest that defects in cohesion
pathways may indeed slow S-phase progression [3,4].
One model proposed to explain the S-phase progression
defect was that cohesins coordinate origin firing: fewer
cohesins lead to fewer forks and thus a longer S-phase.
A second model focused on reduced fork migration in
establishment-depleted cells. The model advanced stipu-
lated that cohesins normally exist as barriers that
physically impede the replication fork. Only during estab-
lishment would cohesins undergo a structural change to
allow for fork progression. Both hypotheses require addi-
tional validation, and several lines of evidence appear to be
inconsistent with the cohesin barrier model in particular,
including observations that normal replication takes
place in cohesion mutants in other model cell systems
(see below).

In this article I briefly review replication-coupled cohe-
sion establishment and recent models of cohesins as fork
barriers and coordinators of origin firing. Evidence that
challenges these models is then examined, from which
I offer alternative hypotheses including that mutation of

Opinion

Glossary

Aneuploidy: incorrect DNA content of a cell – often the consequence of

chromosome mis-segregation during mitosis.

Cohesin: the complex of Mcd1/Scc1, Smc1, Smc3 and Irr1/Scc3 that tethers

sister chromatids together from S-phase until anaphase onset. Cohesins also

play a role in transcription regulation.

Cohesion: the process by which sister chromatids are identified and tethered

together.

Establishment: the process by which chromatin-associated cohesins are

converted to a tether-competent state. Ctf7 is an acetyltransferase that

modifies the cohesin subunit Smc3 to establish cohesion. In the absence of

Ctf7, sister chromatids are fully decorated with bound cohesins but remain

unpaired.

FLIP (fluorescence loss in photobleaching); FRAP (fluorescence recovery after

photobleaching: microscopy-based techniques that permit the detection of

moving fluorescently labeled proteins, lipids or macromolecules.

PCNA (proliferating cell nuclear antigen): a ring structure (homotrimeric

complex in eukaryotes). By encircling DNA and binding to DNA polymerase,

PCNA facilitates processive DNA replication and is often referred to as a sliding

clamp.

RFC (replication factor C) complex: the complex that loads sliding clamps such

as PCNA onto DNA to facilitate DNA replication and repair. There are currently

four different RFC complexes in yeast which differ primarily by the identity of

the unique large subunit (Rfc1, Ctf18, Rad24 or Elg1) that associates with Rfc2–

Rfc5.

Single fiber analysis: sequential but temporally distinct incorporation of

nucleotide analogs that allows for measurement of replicated DNA regions

over time.
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human establishment factors may directly destabilize the
replication forks to which they bind.

Yeast cell studies reveal that cohesion establishment
appears coupled to the DNA replication fork in
unperturbed cells
Cohesin complexes (composed of Mcd1/Scc1, Smc1, Smc3
and Scc3/Irr1) tether sister chromatids together from early
S-phase until anaphase onset [1]. The establishment factor
Ctf7/Eco1 (herein termed Ctf7; additional gene nomencla-
ture is given in Table 1) is an acetyltransferase that
modifies the cohesin subunit Smc3 to convert chromatin-
bound cohesins to a sister chromatid-tethering state [5–8].
Cohesion establishment appears to be intimately coupled
to DNA replication during S-phase: Ctf7 associates with
DNA replication factors such as PCNA, RFC complexes
(Glossary and below) and Chl1 DNA helicase-like protein
[9–11]. Mutation in any one of these DNA replication
factors (and a host of fork-related factors) is sufficient to
produce cohesion defects that result in random segregation
of sister chromatids [1,2,9–22]. Although many DNA repli-
cation factors promote cohesion, others appear to antago-
nize Ctf7-dependent sister chromatid tethering [23–26].
For instance, Elg1 and Ctf18 bind to Rfc2–Rfc5 in a mutu-
ally exclusive fashion to form alternative RFC complexes –

but deletion of ELG1 rescues, whereas deletion of CTF18
exacerbates, the conditional growth and cohesion defects of
ctf7 mutated cells [23,24,27]. That alternative RFC com-
plexes promote (establishment) or antagonize (anti-estab-
lishment) sister chromatid tethering reactions strengthens
the notion that Ctf7 activity is coupled to the replication
fork [1]. Ctf7 activity is limited to S-phase by degradation
during G2/M [28], but Ctf7 becomes active outside of S-
phase in response to DNA damage, raising an important
issue that I will return to later [29–34]. Despite the wealth
of evidence that establishment is coupled to replication,
little if any evidence suggested that S-phase progression in
turn depends on cohesion. New studies, however, hint at
just such a reciprocal relationship. Mutation of cohesion
pathways produced S-phase progression defects – leading
to models that cohesins might either act as barriers to fork
progression or coordinate origin firing [3,4].

Cohesin as a barrier to replication-fork progression
Ctf18–RFC (and the RFC cofactor Dcc1) promotes sister
chromatid tethering reactions presumably by facilitating
Ctf7 acetylation of Smc3 [1]. Recent human cell studies
confirmed that DCC1 deletion produces robust cohesion
defects. DCC1 depletion also diminished Ctf18 protein
levels and reduced Smc3 acetylation [3]. Single fiber comb-
ing analyses (where nucleotide analogs are used to detect
replicated domains along straightened DNA) further
revealed that cells depleted of Ctf18–RFC–Dcc1 exhibit
significantly decreased replication-fork velocities and an
increase in the incidence of stalled forks compared to
control cells [3]. That cells diminished for replication com-
ponents exhibit fork progression defects is hardly surpris-
ing, but that Ctf18–RFC–Dcc1 promotes Ctf7 activity
raised the possibility that decreased fork velocities might
result from establishment defects. Indeed, single fiber
combing analyses revealed that human cells knocked down
for either ESCO1 or ESCO2 exhibit significantly reduced
replication-fork velocities – as did elevated expression of
non-acetylatable Smc3 [3].

These results provide an exciting twist to previous
models of replication-coupled cohesion in that fork
progression now appears sensitive to completion of
sister chromatid tethering reactions. How might this
work? The possibility put forward was that chromatin-
associated cohesins impede replication-fork progression
[3] (Figure 1a). Based on a popular notion that cohesin
forms a giant ring that encircles DNA upon deposition
[35,36], acetylation of Smc3 was suggested to convert
cohesin ring barriers into an opened ring that would allow
for replication-fork progression, followed by ring closing
around both sister chromatids to establish cohesion [3].
Whereas the complications of this model include a scenario
in which cohesins remain bound to single-stranded DNA
even during template-based synthesis of the complemen-
tary strand, evidence of cohesin interactions with fork
stability factors provide at least in concept one mechanism
for the retention of open cohesin rings [21]. In addition to
findings that overexpression of non-acetylatable Smc3
reduced fork velocities in human cells, the cohesin barrier
model was spurred by findings that co-depletion of Pds5

Table 1. Nomenclature of cohesion factors discussed in this review

Budding yeast Fission yeast Human Function

Ctf7/Eco1 Eso1 EFO1/ESCO1

EFO2/ESCO2

Establishment; acetylation of Smc3

Rad61/Wap1 Wapl WAPL Anti-establishment; bind to Pds5

Pds5 Pds5 PDS5A

PDS5B

Establishment, anti-establishment, and maintenance

Mcd1/Scc1 Rad21 RAD21 Maintenance; cohesin subunit

Smc1 Psm1 SMC1 Maintenance; cohesin subunit

Smc3 Psm3 SMC3 Maintenance; cohesin subunit

Irr1/Scc3 Psc3 SA1, SA2

STAG1,2

Maintenance; cohesin subunit

Scc2 Mis4 NIPBL Deposition

Scc4 Ssl3 Scc4 Deposition

Elg1 Elg1 ELG1 Processivity clamp loader

Bind to Rfc2–Rfc5, interact with Ctf7, oppose establishment

Ctf18 Ctf18 Ctf18 Processivity clamp loader

Bind to Rfc2–Rfc5, interact with Ctf7, promote establishment

Pol30/PCNA Pcn1 PCNA Processivity clamp for DNA polymerase; promote establishment
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(an auxiliary cohesin-associated protein [37–41]) rescued
the fork progression defect produced by diminished ESCO
1 or ESCO2 [3]. If this model is correct, then Pds5 must
contribute to a cohesin conformation that blocks fork
movement.

Challenging the barrier – will the blockade hold?
The underpinnings of the cohesin barrier model are that (i)
cohesins deposited before DNA replication are stable and
block subsequent fork progression, (ii) diminished Ctf7
function results in slowed replication forks, and (iii) Pds5
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Figure 1. Alternative views of replication-fork progression defects in cohesion-deficient cells. (a) Cohesin as a barrier to DNA replication-fork movement. (i) As proposed,

cohesins form rings (ring model in red) that are loaded onto DNA during G1 or earlier. (ii) Upon entering S-phase, replication forks (DNA polymerase, blue hexagon;

PCNA, dark blue ring; RFC complexes, five-ball grey cluster) assemble and move along the DNA. Only leading-strand synthesis is shown for simplicity. (iii) In cells lacking

Ctf7, cohesin barriers block fork progression (dashed black line). (iv) In cells that retain functional Ctf7 (yellow triangle), fork-associated Ctf7 reaches forward to acetylate

(purple star) cohesin. (iv) This results in Pds5 (orange crescent) displacement and cohesin ring opening (in green). Cohesin remains bound during template-based

synthesis of the complementary strand. (v) After fork passage, cohesin ring re-closes around both sisters (fork components not shown). (b) Human Ctf7 effect on

replication-fork progression. (i) Cohesins (clamp model in green) can associate with DNA before S-phase, but are highly dynamic and are therefore unlikely to load as

rings or form effective barriers. (ii) Functional cohesin loading takes place during DNA replication and may be coordinated with fork progression. Conceptually, this

model allows for the deposition of cohesins on both sister chromatids (deposition shown only for the leading strand). Fork-associated Ctf7 acetylates chromatin-bound

cohesin for conversion to a state competent for sister pairing. (iii) In human cells diminished in Ctf7 function, DNA polymerase may transiently release from PCNA,

resulting in stalled forks (black dashed line) and short gaps in synthesis. (iv) In cells that retain Ctf7, sister chromatid tethers may occur by any one of many

conformations including a single ring around both sisters, paired rings – one around each sister, and clamps or bracelets. Cohesin clamps attached to one another and

associated with each sister chromatid are shown here.
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displacement is required for establishment. An additional
consideration is the cohesin ring structure posited to impede
fork progression. Despite documented roles of cohesins in
sister chromatid tethering, chromosome condensation and
transcription regulation, it might be surprising to learn that
we still do not have any clear view of how cohesin structures
look in vivo nor whether cohesins adopt altered conforma-
tions within these different contexts [1]. This crucial facet of
the barrier model and specifically the notion that giant
cohesin rings encircle DNA are discussed in Box 1.

The first tenet of the cohesin barrier model is that
cohesins deposited during G1 block subsequent replica-
tion-fork progression. This implies a level of stability re-
garding the association of cohesin with chromatin before
replication. By contrast, detailed FRAP and/or FLIP anal-
yses performed in flies, mammalian cell systems and yeast
all clearly document that cohesins are highly dynamic and
quite transiently chromatin-associated before S-phase. In
fact, stable cohesin association requires DNA replication-
fork passage [42–46]. These results raise the following
‘chicken and egg’ conundrum: stable cohesin barriers block
replication-fork progression but replication-fork progres-
sion stabilizes otherwise highly dynamic cohesins. It is
equally likely that cohesins ‘deposited’ onto chromatin
before replication are not in the form of rings that entrap
DNA nor relevant to sister chromatid tethering reactions
[42,47]. This view is consistent with findings that cohesins
can be deposited as early as late G1 (yeast) or during
mitotic exit (vertebrate cells), but that deposition is essen-
tial only during S-phase and when cohesion is established
[48–51].

The second tenet of the cohesin barrier model is based
on evidence that knockdown of human ESCO1 or ESCO2
resulted in fork velocities reduced by half [3], doubling the
duration of S-phase. Given the highly conserved nature of
Ctf7-dependent Smc3 acetylation [6–8], diminished Ctf7

function should recapitulate S-phase defects in any model
system. This does not appear to be the case. Budding-yeast
cells deficient in Ctf7 (or Pds5) contain chromosomes fully
decorated by cohesins (‘barriers’ in place) but exhibit rela-
tively normal S-phase progression [27,37,38,51–54]. Iden-
tical results were obtained in fission yeast cells harboring
mutations in Eso1: S-phase progression and duration
appeared to be identical to those of wild-type cells [55].
Thus, one must consider that the replication-fork progres-
sion defect reported specifically for human cells is based on
something other than unacetylated Smc3 or cohesin bar-
riers.

The third tenet of the barrier model is predicated on
findings that Ctf7-dependent Smc3 acetylation displaces
Pds5 from cohesin. On the one hand, Pds5 both binds to
cohesins and is essential to maintain sister chromatid
pairing through M-phase [36–40] – findings inconsistent
with Pds5 displacement during establishment. On the
other hand, Pds5 appears to exert both pro- and anti-
establishment functions, suggesting that biasing Pds5
activity or partners (Ctf7, Rad61 and cohesins) could tip
the ‘establishment’ balance in one direction or the other
during S-phase [25,26,37–45,55–61]. Admittedly, the
characterization of Pds5 remains in its infancy, and re-
solving these issues will require further experiments re-
garding (i) Pds5 regulation of Ctf7 acetyltransferase
activity during establishment, (ii) Smc3 acetylation effect
on Pds5 positioning relative to the cohesin complex, and
(iii) Pds5 influence on cohesin dynamics throughout the
cell cycle.

Alternative views to a cohesin barrier model
Are there explanations other than a cohesin barrier model
that could account for the fork progression defects observed
in cells diminished for Ctf7? I propose here alternative
scenarios based in part on the finding that human cells

Box 1. Cohesins may be in the form of rings, bracelets or clamps

Electron microscopy and biochemical analyses provide strong evi-

dence that Smc1 and Smc3 (Smc1/3) are elongated molecules in which

associations between distal tips and splaying apart of the kinked central

domains produce a closed structure with a central lumen [1,75,76].

Despite the popularity of a ‘ring’ model in which both sister chromatids

are thought to somehow fit inside a single cohesin ring, this model fails

to explain how non-SMC components such as Mcd1, Scc3 and Pds5,

which are clearly required to maintain sister identity but are not part of

the contiguous ‘ring’, participate in tethering. Opposite ends of the

Smc1/3 structure appear to interact with one another in a head-to-tail

fashion, which suggests that cohesins may bind other cohesins

through one or more non-SMC components. These findings are

consistent with a model that cohesins decorate each sister and that

establishment results from the pairing of rings [1,75,76]. However,

experimental evidence in support of higher-order cohesin complexes is

limited. A second possibility that explains interactions between

opposite ends of Smc1 and Smc3 is that non-SMC subunits cause

Smc1/3 to fold over – a conformation that would eliminate a cohesin

ring lumen. This folded-over conformation is supported by both atomic

force microscopy and FRET (fluorescent resonance energy transfer – a

microscopy-based technique that allows for the detection of closely

apposed molecules labeled with electrically coupled fluorophores)

[62,77]. Thus, rings may simply represent an assembly mid-point for a

more compact and functional cohesin structure such as a C-clamp that

could grasp one or both chromatids. Another model equally consistent

with the elongated Smc1/3 heterodimer structure is that cohesins

enwrap chromatids as a bracelet instead of a ring. Elucidating the

cohesin structure (single ring, double ring, C-clamp or bracelet; Figure I)

that tethers sister chromatids and also affects chromosome condensa-

tion, DNA repair and transcription regulation remains a high priority in

the field [1,73–76].
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Figure I. Models of cohesin conformation.
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depleted for either Ctf18–RFC–Dcc1 or Ctf7 homologs
accumulate DNA damage [3]. Mutations in DNA replica-
tion factors such as PCNA or in one of many RFC subunits
produce DNA damage and/or adversely affect S-phase
progression via accumulation of nicks/gaps that stall fork
progression. Moreover, all RFCs (including Ctf18) appear
to play key and redundant roles in DNA repair [61–64]. In
this light, it is not surprising that human cells accumulate
DNA damage when depleted of Ctf18–RFC–Dcc1 [3]. No-
tably, Ctf7 associates with both PCNA and all RFC com-
plexes and functions specifically during S-phase in
unperturbed cells [9,11,27,28,52]. Thus, a plausible sce-
nario is that diminished levels of Ctf7 adversely impact the
assembly or stability of the replication fork to which it
binds – the net result being stalled forks that resolve into
DNA damage (Figure 1b). Prior findings that expression of
non-acetylatable Smc3 alters Ctf7 activity could then ac-
count for the fork progression defect in those cells [3,8].
Analysis of Roberts syndrome (RBS), a developmental
disease that arises from mutations in ESCO2 is germane
to this model. RBS patient cells exhibit DNA damage foci
and reduced fork velocities but contain predominantly
paired sister chromatids. Thus, ESCO2 function in estab-
lishing cohesion appears to be separable from that of fork
instability and DNA damage [65].

A second explanation for S-phase progression defects
might reside in the many faces of Ctf7 throughout evolu-
tion. Budding yeast Ctf7 contains 281 residues, the vast
majority of which form the acetyltransferase domain
[5,27,52]. Fission yeast Eso1 contains 872 residues: the
C-terminal domain is akin to budding yeast Ctf7 whereas
the extended N-terminal domain contains a Rad30-like
DNA repair polymerase (Pol eta/h). Both domains are
functional in their own right and each domain can func-
tion independently of mutations in the other [55,58,66].
Importantly, mutation of either budding or fission yeast
Ctf7 fails to produce DNA damage [27,55,58]. Why are
human Ctf7 homologs different? Human ESCO1 (the first
homolog identified) contains 840 residues: the C-terminus
again containing a Ctf7-like acetyltransferase domain,
but the extensive N-terminal contains a linker-histone-
type domain [67]. It is tempting to speculate that this
linker histone may be crucial for fork progression. If true,
future experiments will be required to test whether mu-
tation of the linker-histone domain destabilizes replica-
tion forks directly or through an as yet unrecognized
chromatin remodeling error. Human ESCO2 contains
601 residues, but this N-terminal extension is different
from any other homolog identified to date [65]. If each Ctf7
homolog is unique, then each is likely to manifest unique
phenotypes when mutated – not all of which can be
ascribed to cohesion defects. In support of this assertion,
mutation of cohesion factors produce a myriad of disease
states, many of which appear to be founded on different
roles in non-overlapping cellular and developmental
pathways (Box 2).

Origin firing: back to the basics of cohesin tethering
functions
Studies of DNA helicases provide a further and different
link between cohesion and S-phase progression pathways.

The MCM complex (Mcm2–Mcm7) is the major helicase
that unwinds DNA in preparation for replication. Biochem-
ical studies suggest that human Mcm4 binds to other MCM
complex components as well as to cohesins [4]. In pursuing
a physiological link between cohesins and DNA helicase,
cells knocked-down for cohesin were tested for altered S-
phase progression. S-phase progression was indeed
delayed, but single fiber combing and immunodetection
methods failed to uncover diminished replication-fork ve-
locities or DNA damage [4]. What mechanism prolonged S-
phase? Extended single-fiber analysis revealed far fewer
DNA replication forks compared to control cells [4]. More-
over, cohesin knockdown resulted in increased Halo dia-
meters (a technique used to measure the spread of relaxed
chromatin emanating from a nucleoplasmic scaffold [68]).
These findings raised an intriguing possibility that cohe-
sins cluster replication origins into foci to coordinate firing
[4]. In the absence of cohesins, it was argued that fewer
origins became clustered which resulted in longer loops
(larger halos), greater interfork distances and a longer S-
phase (Figure 2a).

Presently, the notion that cohesins coordinate origin
firing is not supported in lower eukaryotic model cell
systems. For instance, analysis of mcd1/scc1, pds5 or
scc3/irr1 mutant homologs (Table 1) in budding and/or
fission yeast cells failed to uncover any significant S-phase
progression defect [52,69–72]. At the very least, little evi-
dence supports the notion that origin clustering is con-
served through evolution. Are there other models to
consider? Cohesion mutations also impact upon transcrip-
tion (Figure 2b), an effect that could reduce expression of
replication initiation proteins [73,74]. Cohesin roles in
transcription and chromosome condensation (most notably
in yeast [27,37,69]) could further complicate interpretation
of Halo-based assays performed in cohesion mutants
(Figure 2b).

Box 2. Cohesion pathways play key roles in cell and

developmental pathways

It is well-documented that cohesion helps ensure that each daughter

cell receives a full genetic complement upon cell division and that

errors in chromosome segregation can have devastating conse-

quences. For instance, defects in cohesin, deposition, or establish-

ment pathways result in massive chromosome mis-segregation and

cell aneuploidy – a hallmark of cancer. Cohesion gene mutation or

upregulation is tightly correlated with aggressive melanoma, breast,

astrocytic and colorectal cancers with additional links on the horizon

[78–81]. As chromatin-binding proteins, cohesins also impact upon

chromosome metabolism. For instance, yeast cell studies reveal

that cohesion defects prevent chromosome condensation [27,37,69]

that potentially could lead to chromosome amputation by the

cytokinetic cleavage furrow. Results from multiple model systems

also demonstrate that cohesins play diverse roles in transcriptional

regulation of embryonic development [73,74]. In humans, mapping

studies linked cohesion mutations to severe developmental ab-

normalities including Cornelia de Lange syndrome, Roberts syn-

drome/SC Phocomelia, Rothmund–Thompson syndrome and

Warsaw breakage syndrome [65,82–87]. Some of these maladies

are reminiscent of the severe birth defects that result from

thalidomide exposure as witnessed in the late 1950s. In light of

these links to tumorigenesis and developmental abnormalities, it is

clear why cohesion pathways have received such intense attention

over recent years.
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Concluding remarks
That cohesion mutations result in stalled and/or fewer
forks are important observations [3,4]. In this article I
offer alternative explanations regarding the molecular
basis for these S-phase progression effects – including
direct effects on fork stability or the transcription of initi-
ation factors. The point of course is that researchers col-
lectively interpret data to promote new research. At odds to
this process is the premature transition of model into
dogma. For instance, the notions of ‘ring-shaped cohesins’
or that cohesins encircle both sister chromatids may one
day prove to be correct, but declarative statements to this
effect are premature. Further efforts will be required to
permit differentiation between cohesin as single rings,
bracelets, clamps or hand-cuffs in the various contexts
(cohesion, condensation, transcription, replication/repair,
origin clusters) in which they function [1,73–76]. As anoth-
er example, several lines of evidence argue that cohesion
establishment is coupled to replication, but it is also true
that Ctf7 becomes active during G2/M in response to DNA
damage. In this context, establishment occurs in the ab-
sence of replication factors and apparently without new
rounds of Smc3 acetylation (Mcd1/Scc1 appears to be the
target) [29–34]. Therefore, future efforts will reveal wheth-
er replication-coupling is a convenience, or a necessity, for
establishment reactions during S-phase.
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