HOMOTOPY TYPE AND v,-PERIODIC HOMOTOPY GROUPS OF
p-COMPACT GROUPS

DONALD M. DAVIS

ABSTRACT. We determine the vi-periodic homotopy groups of all
irreducible p-compact groups. In the most difficult, modular, cases,
we follow a direct path from their associated invariant polynomi-
als to these homotopy groups. We show that, with several ex-
ceptions, every irreducible p-compact group is a product of ex-
plicit spherically-resolved spaces which occur also as factors of p-
completed Lie groups.

1. INTRODUCTION

In [4] and [3], the classification of irreducible p-compact groups was completed.
This family of spaces extends the family of (p-completions of) compact simple Lie
groups. The v;-periodic homotopy groups of any space X, denoted vy ‘7, (X )(p)> are
a localization of the portion of the homotopy groups detected by K-theory; they were
defined in [20]. In [17] and [16], the author completed the determination of the v;-
periodic homotopy groups of all compact simple Lie groups. Here we do the same for
all the remaining irreducible p-compact groups.'

Recall that a p-compact group ([22]) is a pair (BX, X) such that BX is p-complete
and X = QBX with H*(X;F,) finite. Thus BX determines X and contains more
structure than does X. The homotopy type and homotopy groups of X do not take

into account this extra structure nor the group structure on X.
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According to [4, 1.1,11.1] and [3], the irreducible p-compact groups correspond to
compact simple Lie groups? and the p-adic reflection groups listed in [2, Table 1]
for which the character field is strictly larger than Q. See [13, pp.430-431] and [25,
p.165] for other listings. We use the usual notation ((BX,),, (X,),), where n is the
Shephard-Todd numbering ([33] or any of the previously-mentioned tables) and p is
the prime associated to the completion.

We will divide our discussion into four families of cases:

(1) The compact simple Lie groups—infinite family 1, part of in-
finite family 2, and cases 28, 35, 36, 37 in the Shephard-Todd
list.

(2) The rest of the infinite families numbered 2a, 2b, and 3.

(3) The nonmodular special cases, in which p does not divide the
order of the reflection group. This is cases 4-27 and 29-34.

(4) The modular cases, in which p divides the order of the reflec-
tion group. These are cases (X12)3, (Xa4)2, (Xa9)s5, (X31)s5, and
(X34)7. (Actually, we include (Xi5)3 in Case (3) along with the
nonmodular cases, and the Dwyer-Wilkerson space (Xa4)2 was
handled in [6].)

Here is a brief summary of what we accomplish in each case. The author feels that
his contributions here are nil in case (1)*, minuscule in case (2), modest in case (3),

and significant in case (4).

(1) Spaces X, Xog, X35, X36, and X37 are, respectively, SU(n),
Fy, Eg, B, and Eg. These are p-compact groups for all primes
p, although for small primes they were excluded by Clark and
Ewing ([13]) because H*(BX;[F,) is not a polynomial algebra.
The exceptional Lie group G is the case m = 6 in infinite family
2b. The spaces SO(n), Spin(n), and Sp(n) appear in the infinite
family 2a with m = 2. Simplification of the homotopy types

of many of these, when p is odd, to products of spheres and

2Cases in which distinct compact Lie groups give rise to equivalent p-compact
groups are discussed in [4, 11.4].

3But he accomplished much in these cases in earlier papers such as [16], [17],
and [18].
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spherically-resolved spaces was obtained in [29, (8.1),8.1]. The
v1-periodic homotopy groups of these spaces were computed in
(18], [7], [17], [16], [8], and other papers. We will say no more
about these cases.

(2) In Section 2, we use work of Castellana and Broto-Moller to
show that the spaces in the infinite families can be decomposed,
up to homotopy, as products of factors of p-completions of uni-
tary groups, spheres, and sphere bundles over spheres. See 2.3,
2.5, and 2.7 for the specific results.

(3) In Table 3.2, we list the homotopy types of all cases (X,,), which
are not products of spheres. There are 31 such cases. In each
case, we give the homotopy type as a product of spheres and
spaces which are spherically resolved with a; attaching maps.
In Remark 3.3, we discuss the easily-computed v;-periodic ho-
motopy groups of these spaces.

(4) The most novel part of the paper is the determination of the
v1-periodic homotopy groups of (Xag)s, (X31)5, and (Xs4)7. We
introduce a direct, but nontrivial, path from the invariant poly-
nomials to the vi-periodic homotopy groups. En route, we de-
termine the Adams operations in K*(BX;Z,) and K*(X;Z,).
In the case of (X34)7, we give new explicit formulas for the in-
variant polynomials. We conjecture in 4.1 (resp. 5.17) that the
homotopy type of (Xag)s (resp. (X34)7) is directly related to
SU(20) (resp. SU(42)). We explain why it appears that an

analogous result is not true for (Xs)s.

2. INFINITE FAMILIES 2 AND 3

Family 3 consists of p-completed? spheres S?™~! with p = 1 mod m, which is a
loop space due to work of Sullivan ([34]). The groups vy ', (S?™1),), originally due
to Mahowald (p = 2) and Thompson (p odd), are given in [19, 4.2].

4All of our spaces are completed at an appropriate prime p. This will not always

be present in our notation. For example, we will often write SU(n) when we really
mean its p-completion.
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Family 2 consists of spaces X(m,r,n) where m > 1, rlm, and n > 1. The “de-
grees” of X(m,r,n) are m,2m, ... ,(n—1)m, ™n. These are the degrees of invariant
polynomials under a group action used in defining the space. The Clark-Ewing table
doubles the degrees to form the “type,” as these doubled degrees are the degrees of
generators of H*(BX;F,) in the cases which they consider. For most® of the irre-
ducible p-compact groups X, H*(X;F,) is an exterior algebra on classes of grading
2d — 1, where d ranges over the degrees. Family 2b consists of spaces X (m,r,n) in
which n = 2 and » = m, while family 2a is all other cases. The reason that these are
separated is that 2b has more applicable primes. Indeed, for family 2a, there are p-
compact groups when p = 1 mod m, while for family 2b, these exist when p = £+1 mod
m, and also p=2if m=4or 6, and p =3 if m = 3 or 6. The case m = 6 in family
2b is the exceptional Lie group Gs. Note that all primes work when m = 6. The case
(p=2,m =4) has X = Sp(2), while (p = 3,m = 3) has X = SU(3) or PSU(3), the
projective unitary group. In this case, there are two inequivalent p-compact groups
corresponding to the same (),-reflection group; however, since SU(3) — PSU(3) is a
3-fold covering space, they have isomorphic v;-periodic homotopy groups.

The following results of Broto and Moller ([11]) and Castellana ([12]) will be useful.
They deal with the homotopy fixed-point space X"¢ when G acts on a space of the
same homotopy type as a space X. Here and throughout, C,, denotes a cyclic group

of order m, and U(N) is the p-completion of a unitary group.

Theorem 2.1. ([11,5.2,5.12]) If m|(p — 1), 0 < s <m, and n > 0, then
U(mn + 8)"m ~ X (m, 1,n)
and is a factor in a product decomposition of U(mn + s).
Theorem 2.2. ([11,5.2,5.14]) If m|(p — 1), m > 2, r > 1, and n > 2, then
X(m,r,n)"" ~ X(m,1,n —1)
and is a factor in a product decomposition of X (m,r,n).
Corollary 2.3. If m|(p — 1) and r > 1, then
X(m,r,n) ~ X(m,1,n—1) x §2% 1

5According to [31], the only exclusions are certain compact Lie groups when p
is very small.
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and X(m,1,n — 1) is a factor in a product decomposition of U(m(n — 1)).

Here X (m, 1,1) is interpreted as S?™~ 1.

Proof. We use Theorem 2.2 to get the first factor. By the Kunneth Theorem, the
other factor must have the same IF,,-cohomology as 527 =1 and hence must have the
same homotopy type as this sphere. Now we apply Theorem 2.1 to complete the
proof. W

Remark 2.4. Our Corollary 2.3 appears as [12, 1.4], except that she has an apparent
typo regarding the dimension of the sphere. Also, neither she nor [11] have the
restriction » > 1, but it seems that the result is false for r = 1, since by induction it

would imply that X (m,1,n) is a product of spheres, which is not usually true.

Remark 2.5. Let p be odd. By [29], for any N, p-completed SU(N) splits as a
product of (p — 1) spaces, each of which has H*(—;F,) an exterior algebra on odd
dimensional classes of dimensions b, b+ q, ... , b+ tq, for some integers b and t. Here
and throughout ¢ = 2(p—1). Our space X (m, 1,n—1) will be a product of (p—1)/m
of these spaces for SU(m(n — 1)). The v;-periodic homotopy groups of these spaces
can be read off from those of SU(m(n — 1)), since the (p — 1) factors have v;-periodic
homotopy groups in nonoverlapping dimensions. Thus, to the extent that [18] is
viewed as being a satisfactory description of vy 'm.(SU(n))).,° Corollary 2.3 gives
o7 T (X (M, 7, n)) () provided m|(p — 1).

Example 2.6. Let p = 7. Then X(2,2,6) ~ X(2,1,5) x SY. There is a product

decomposition
(SU(10))7 ~ B(3,15) x B(5,17) x B(7,19) x S x S x §13,
where B(2n + 1,2n + 13) denotes a 7-completed S*™*-bundle over S* '3 with at-
taching map aq. Then
X(2,1,5) ~ B(3,15) x B(7,19) x S'.

6[18, 1.4] states that vl_lﬂ'gk(SU(n))(p) is a cyclic p-group with exponent
min(v,(j1S(k, j)) : j > n), where S(—, —) denotes the Stirling number of the second
kind. In [21], more tractable formulas were obtained if n < p* — p + 1. Here and
throughout, v,(—) is the exponent of p.
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What remains for Family 2 is the cases 2b when m|(p 4+ 1). These are the spaces
X (m,m,2) with m|(p+1). Let B(3,2p+ 1) denote the p-completion of an S*-bundle

over S?PT! with attaching map a;.

Theorem 2.7. If m|(p+ 1), then

B(3.2 1 = 1
X(m,m,Z):{ (3,2p+1) m=p+

S3x 2=t < p+ 1.
Proof. Let X = X(m,m,2) with m|(p + 1). Then H*(X;F,) = Alxs, xom—1]. If
m < p+ 1, then by the unstable Adams spectral sequence ([10]), both classes z3
and w9,,_1 are spherical. Indeed, the F)-term begins with towers in dimensions 3
and 2m — 1 emanating from filtration 0, and no possible differentials. See Diagram
3.4. Because X is an H-space, the maps S® — X and S?" ! — X yield a map
S3 x §?2m=1 — X and it is a p-equivalence by Whitehead’s Theorem.

On the other hand, suppose m = p+ 1. We will show that P'(z3) = xg,1. It then
follows from [29, 7.1] that there is a p-equivalence B(3,2p +1) — X.

To see that P'(x3) = xgpr1, we use the classifying space BX, which satisfies
H*(BX:F,) = Folys,yspso). We will prove that P (yy) = yapra + AyP™? for
some generator yo,42 and some A € F,, from which the desired result about the x’s
follows immediately from the map ¥X — BX, which in H*(—;F,) sends y;;+1 to z;
and sends products to 0.

First note that

Plya) = Ay o2 Byap 1o
Plympia) = Cyi+ Dy~ V? Y2p+2;
for some A, B, C, D in F,. By the unstable property of the Steenrod algebra,
Pp+1(y2p+2) = ygp+2‘ (28)

We must have
1+j(p+1)/2. p—1—
Pp(y2p+2 ZC]?J I/ gp+2]7
7=0
for some ¢; € F,. Since PP = P'PP and

PHYaps) = iP (Y)Y Wi + YSP (Yopr2) Vi, )
2.9
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the only way to obtain (2.8) is if ¢¢B = 1 in F,. Thus B must be a unit, and the

generator Y12 can be chosen so that B=1. W

3. NONMODULAR INDIVIDUAL CASES

In this section, we consider all cases 4 through 34, excluding case 28 (which is F}),
in the Shephard-Todd numbering in which p does not divide the order of the reflection
group. We obtain a very attractive result. One modular case, (Xi2,p = 3) is also
included here. There is some overlap of our methods and results here with those in
27].

Theorem 3.1. Let X = (X,,), with 4 < n < 34 and n # 28, excluding the modular
cases (Xag)s, (X31)5, and (Xs4)7, which will be considered in the next two sections.
Then X ~ [1S%1, where 2d ranges over the integers listed as the “type” in [13],
except for the 31 cases listed in Table 3.2. In these, each B(—,... ,—) is built by
fibrations from spheres of the indicated dimensions, with o as each attaching map,
and occurs as a factor in a product decomposition of the p-completion of some SU(N).

We will call the integers d, which are 1/2 times the “type ” numbers of Clark-Ewing,

the “degrees.”
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Table 3.2. Cases in Theorem 3.1 which are not products of spheres

Case | Prime | Space

5 7 | B(11,23)

8 5 | B(15,23)

o | 17 |B(15,47)

10 | 13 | B(23,47)

12 | 3 | B(11,15)

14 | 19 | B(11,47)

16 | 11 | B(39,59)

17 41 B(39,119)

18 | 31 | B(59,119)

20 | 19 |B(23,59)

24 | 11 | B(7,27) x S1

25 | 7 | B(11,23) x S'7

2% | 7 | B(11,23,35)

2 | 13 | B(11,35) x 5%

27 | 19 | B(23,59) x S13

20 | 13 | B(15,39) x S7 x §%3

20 | 17 | B(7,39) x S5 x §%

30 | 11 | B(3,23) x B(39,59)

30 | 19 | B(3,39) x ST x S

30 | 29 | B(3,50) x S x §%

31 | 13 | B(15,39) x B(23,47)

31 17 | B(15,47) x S x §%

32 | 7 | B(23,35,47,59)

32 | 13 | B(23.47) x B(35,59)

32 19 | B(23,59) x §3° x §47

33 | 7 | B(7,19) x B(11,23,35)

33 13 | B(11,35) x S7 x 519 x 523
34 | 13 | B(11,35,59,83) x B(23,47)
34 | 19 | B(11,47,83) x B(23,59) x S
34 31 | B(23, 83) x SH x 835 x 4T % §%9
34 37 | B(11,83) x S% x §3% x §47 x §59

Remark 3.3. The v;-periodic homotopy groups of B(2n + 1,2n + 2p — 1) were
obtained in [8, 1.3]. Those of B(11,23,35); and B(23,35,47,59); were obtained in
8, 1.4]. Using [21, 1.5,1.9], we find that for e = 0, 1,

0 t#£5 (12)

1 _
Vg 7T2t,€<B(11, 35, 59; 83))(13) ~ {Z/13max(f5(t),f17(t),f29(t),f41(t)) t=5 (12)7
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where f,(t) = min(vy,4 + v43(t — 7)), while

0 t#£5 (18)
7./19m2x(5(0: /20 [0 (8) - ¢ =5 (18),

where f!(t) = min(y,3 + vi9(t — 7)).

vy Mra—e(B(11, 47, 83))a9) ~ {

Proof of Theorem 3.1. 1t is straightforward to check that the pairs (case, prime) listed
in Table 3.2 are the only non-modular cases in [2, Table 1] in which an admissible
prime p satisfies that (p — 1) divides the difference of distinct degrees. Indeed all
other admissible primes have (p — 1) greater than the maximum difference of degrees.
For example, Case 30 requires p = 1,4 mod 5, and the degrees are 2, 12, 20, 30. The
first few primes of the required congruence are 11, 19, and 29. Clearly 10, 18, and
28 divide differences of these degrees, but no larger (p — 1) can. Thus the unstable
Adams spectral sequence argument used in proving Theorem 2.7 works the same way
here to show that X is a product of S?¢~! in all cases not appearing in Table 3.2.
In the relevant range, the Fs-term will consist only of infinite towers, one for each
generator. The first deviation from that is a Z/p in filtration 1 in homotopy dimension
(2d — 1) 4+ (2p — 3), where d is the smallest degree. This will always be greater than
the dimension of the largest S24-1.

The next step is to show that the Steenrod operation P! in H*(X;F,) must connect
all the classes listed as adjacent generators in one of the B-spaces in Table 3.2. We
accomplish this by considering the A-module H*(BX;F,). All cases involving factors
of B(2m—1,2m+2p—3) are implied by Lemma 3.7 by applying H*(BX) — H*}(X),
which sends products to 0. Similarly, Lemma 3.9 covers the cases with a factor
B(11,23,35) or B(11,47,83). Finally, Lemma 3.11 covers the cases with a factor
B(23,35,47,59) or B(11,35,59,83).

Now we must show that the spaces X have the homotopy type claimed. The
first 10 cases are immediate from [29, 7.1], and the two other non-product cases,
ie. (Xg6)7 and (X32)7, follow from [29, 7.2,7.6]. Note that these results of [29] did
not deal with p-completed spaces, but the obstruction theory arguments used there
apply in the p-complete context. There are 15 additional types which we claim to be
quasi p-regular. As defined in [30], a space is quasi p-regular if it is p-equivalent to a

product of spheres and spaces of the form B(2n + 1,2n + 2p — 1). In [30] (see esp.
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(30, pp. 330-334]), many exceptional Lie groups are shown to be quasi p-regular (for
appropriate p) using a skeletal approach. We could use that approach here, but we
prefer to use the unstable Adams spectral sequence (UASS). The two methods are
really equivalent.

Let ¢ = 2p — 2. In Diagrams 3.4 and 3.5, we illustrate the UASS for S$?"*! in
dimension less than 2n 4 pg — 1 and for B(2n+ 1,2n+ ¢+ 1) in dimension less than
2n+3q—3. Diagram 3.4 gives a nice interpretation of the statement of the homotopy
groups in [35, 13.4]. If n > p, the paired dots in Diagram 3.4 will not occur in the
pictured range. The nice thing about these charts is that the [F,-cohomology groups
of our spaces X are known to agree with that of their putative product decomposition
as unstable algebras over the Steenrod algebra, and are of the required universal form
for the UASS to apply; hence their UASS has Es-term the sum of the relevant charts
of spheres and B-spaces. In all cases, there will be no possible differentials.

One can check that in all 15 cases in which X is claimed to be quasi p-regular,
the towers in UASS(X) corresponding to the spheres and the bottom cell of each
B(2n + 1,2n 4+ g + 1) cannot support a differential, and hence yield maps from the
sphere or 5" into X. Next one checks that 7a,.4(X) = 0 and 74n4411(X) = 0.
As these are the groups in which the obstruction to extending the map S$?"*! — X
over B(2n + 1,2n + ¢ + 1) lie, we obtain the desired extension. Finally, we take the
product of maps B — X and S?%~! — X using the group structure of X, to obtain
the desired p-equivalence from a product of spheres and B-spaces into X.

The remaining cases, (X33)7, (X34)13, and (X34)19, are handled similarly. The Es-
term of the UASS converging to m,(X) is isomorphic to that of its putative product
decomposition. For example, E5(X34)13 is the sum of Diagram 3.5 with n = 11
and g = 24 plus Diagram 3.6. We can map S* — X and S' — X corresponding to
generators of homotopy groups. Then we can extend the first map over the 47- and 70-
cells because m46(X) = 0 and 7g9(X) = 0. This gives a map B(23,47) — X. Similarly
we can extend the second map over cells of B(11,35,59,83) of dimension 46, 70, 94,
118, 142, 105, 129, 153, and 188. Taking the product of these two maps, using the
multiplication of X, yields the desired 13-equivalence B(23,47) x B(11,35,59,83) —
X. The other two cases are handled similarly. W



p-COMPACT GROUPS 11

Diagram 3.4. UASS(S?*"*1) in dim < 2n +pq— 1. Here n < p.

2n+1 2n+q 2n+2q 2n+ngq 2n+(n+1)q 2n+(p—1)q

Where there is a pair of dots, the grading at the bottom refers to the one on right,

and the other is in grading 1 less.

Diagram 3.5. UASS(B(2n+ 1,2n+q+ 1)) in dim < 2n + 3q — 3.

ifn=1
I/f/I

2n+1 2n+q+1 2n+2q 2n+3q
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Diagram 3.6. UASS(B(11,35,59,83);3) in dim < 200.

11

35 59 83 106 130 154 178

In the following lemmas, which were used above, g; denotes a generator in grading
7.
Lemma 3.7. a. If m # 1 mod p and Fplgom, g2m+2p—2] s an unstable A-algebra, then
Plgom = ugams2p—2 mod decomposables, with u # 0.

b. The same conclusion holds if the unstable A-algebra contains additional genera-

tors in dimensions Z 2m mod (2p — 2).

Proof. a. For dimensional reasons, we must have P'ga,, = agam+2p—2 plus possibly a
power of gay,, for some o € F,; and Plgapmi2p-2 = gomY’, for some polynomial Y. The
unstable condition requires that P~ gy, 0, 9 = ghyyiap 2, and, since m # 1 mod

p, this equals, up to unit, P*P™ 2gy, 5, 5. For dimensional reasons,

P2 G op—2 = BlamGomiop—z + GomZ (3.8)
for some 8 € F, and some polynomial Z. By the Cartan formula (similar to (2.9)),
the only way that P" applied to (3.8) can yield g5, ,9, o is if both a and  are units.
b. The only way that the additional generators could affect any of the considera-
tions of part (a) would be if several of them (possibly the same one) were multiplied
together to get into the congruence of part (a). By the Cartan formula, P! of such a
product will still involve some of these additional generators as factors, and so cannot

yield the g3, 2, » term on which the argument focuses. W
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Lemma 3.9. a. IfFi9]g12, gus, gsa] is an unstable A-algebra, then, mod decomposables,
Plgio = urgas and Pl gas = usgss with u; # 0.

b. If F7[g12, Goa, g36] is an unstable A-algebra, then, mod decomposables, Plgiy =
u1g2s and Plgoy = uagss with u; # 0.

c. The same conclusion holds if the unstable A-algebra contains additional genera-

tors in dimensions % 12 mod (2p — 2).
Proof. a. For dimensional reasons, we must have

Plgis = aigss + asgly
Plois = Bigsa + Bogirgas + Ba91s
Plgss = Mgiadss + V2012945 + 1395298 + Vagis
for some coefficients «;, 3;, ;. The unstable condition requires, up to unit,
PP gsy = ggq and P'P¥gus = gy (3.10)
We use the Cartan formula as in the previous proof. The only terms in P!y, involving
just ggq or just gus are B1gs4 and a gu8, and so these must be nonzero in order to obtain
(3.10).
b. We work mod the ideal generated by gi2. Then Plgis = agos, Plgas = Bgss, and
Plgss = 7934, for some «a, 3, v in F;. This latter term complicates things somewhat.
That P'Pgss = ugls implies 3 # 0 as before. But there are two ways that
PP g24 might yield g3,, one via P'(gi295,) and the other via P'(g3493). Instead,
we consider (P')°P7gey. We must have
P gos = 01936 + 02954936
for some 9; € F7;. We compute
(P03 = 5793 — 5°7° 924056
(P (g3a936) = B°7°934 + 55°7 34936
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Assuming that o = 0, so that the omitted terms of the form g2 in P7gos have
(P15 (them) = 0, then we obtain

ugs, = (PY)°P(gas)
= (P")’(01936 + 92954936)
01(B7 934 — 77 g24g36) + 02(6°7 934 + 560°7792493)-
Coefficients of g4, imply 3 # 0, v # 0, and some §; # 0, but this then gives a

contradiction regarding go4g36 or g5,95- Thus the assumption that o = 0 must have

been false.

c. This follows by the argument used for part (b) in Lemma 3.7. H

Lemma 3.11. a. If Fi3]g12, 936, J60, g4 s an unstable A-algebra, then, mod decom-
posables, P g12 = u1g36, P'gss = uageo, and Plgeo = uzgss with u; # 0.

b. IfF7(ga4, 936, Gus, geo) 18 an unstable A-algebra, then, mod decomposables, P goy =
urg3s, Plgss = gas, and P'gss = geo with u; 7 0.

Proof. a. We can easily prove the second and third parts of the conclusion as in the
proofs of the preceding lemmas. That P!gg, might involve g3 complicates the proof
of the first part.

Assume that

Plg12 = Ogss + agiy. (3.12)

Under this hypothesis, we may work mod the ideal generated by gi2. After possibly

varying generators by a unit, we have

P g36 = goo, P'g60 = gss, Plyss = ’793?67
with v € [F),.

We must have (P!)5P1gs3s = gi3. There are six monomials (not involving g¢i)
which might be part of P'3gs5. They label the columns of Table 3.13, whose columns
give the results of a Maple computation of (P!)° (mod gi2) applied to each. We must
have that ¢33 can be obtained as a linear combination of the columns of Table 3.13
considered as a matrix M. Clearly this cannot be done if v = 0. So we may assume

that ~ is a unit.
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Equivalently, we must have that e; := (1,0,0,0,0,0,0,0,0,0) is in the row space of
M7, Divide the rows of MT by 72, 43, 73, v*, 43, and ~+*, resp. This does not change
the row space. Now multiply the columns of the obtained matrix by 1, v, v, v2, 72,
2, v3, 43, and 43, resp. This does not change whether e; is in the row space, and
yields the numerical matrix obtained by transposing Table 3.13 and ignoring the v’s.

Maple easily rowreduces this matrix mod 13, obtaining

1000003 1 11 O
01000079 3 0
001000311 8 10
00010004 0 O
000O01O0T7T 5 10 0
0000016 0 11 9

Since e; is not in the row space of this matrix, we conclude that (P!)>P13gss cannot
equal gi3 under the hypothesis (3.12), and hence P'g;5 = ugzs mod decomposables,
with u a unit, completing the proof of (a).

The proof of part (b) is very similar and is omitted. MW

Table 3.13. Action of (P')°

956960 936960 93695098t Jaodss 936984 936960984
93 | 577 0 4~3 0 0 8
9359609sa | S 97?2 6> T3 242 0
gl | By B 112 993 992 7P
ggﬁgg4 8 6y 0 11*}/2 7y 12,.)/2
936960980 | 1 2 6y 672 8 92
956950951 6 Ty % 72 12y 82
936960 | 12 4ry 3y 42 0 0
936960984 0 1 1 2 3 9y
936930984 | O 8 5 9y 4 10+
o098 | 0 9 12 107 3 194

4. 5-PRIMARY MODULAR CASES

In this section, we determine the v;-periodic homotopy groups of the modular 5-
compact groups Xo9 and X3;. We pass directly from invariant polynomials to Adams

operations in K*(X) and thence to vy 'm.(X). We provide strong evidence for a
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conjecture (4.1) about the homotopy type of (Xag)s; however, as we will explain, an
analogue for (X3;)5 seems unlikely.

One of the factors in the product decomposition of SU(20)5 given in [29] is an
H-space B3(5) whose Fs-cohomology is an exterior algebra on classes of grading 7,
15, 23, 31, and 39, and which is built from spheres of these dimensions by fibrations.
By [36], there is a product decomposition

(SU(20)/SU(15))5 ~ S x 9% x 9% x §37 x %,
Let B(7,15,23,39) denote the fiber of the composite
B3(5) — SU(20)5 — (SU(20)/SU(15))5 2 (5*1)s.
Conjecture 4.1. There is an equivalence
(Xa0)s ~ B(7,15,23,39).

As we shall prove in 4.16, the evidence for this conjecture is that the two spaces have
isomorphic Adams modules K*(X; 25) and hence isomorphic vy-periodic homotopy
groups. The obstruction-theoretic method which we used to construct most of the
equivalences of 3.2 does not work in this case. There are several possible obstructions
to extending maps over cells in this case.

The input to determining the Adams module K *(X29;25) is the following result
due to Aguadé ([1]) and Maschke ([28]). Throughout the rest of the paper, we will

denote by m, y the smallest symmetric polynomial on variables z;,... ,z, (the

yeee €k
value of ¢ will be implicit) containing the term zf' - - - x3*.

Theorem 4.2. There is a reflection group Gag acting on (25)4, and there is a space
BXoy and map BT — BXsy with BT = K((Zs)*,2) such that

H*(BXag; ) ~ H*(BT; Z5)°,
the invariants under the natural action of Gay on H*(BT;Zs) = Zs[x1, 29,3, 4]

with |x;| = 2. Moreover, H*(BT}; Z5>G29 is a polynomial algebra on the following four



p-COMPACT GROUPS 17
invariant polynomials:
i = may — 1277”6(1,1,1,1)
fs = me)+ 14muq + 168m 222
Ji2 = mqaa) — 33mga) + 330m4a4) + 792ms2,2,2)
foo = myo) — 19me4) — 494m128) — 336M(14,2,2,2) + T16M (12 4.4)
+1038mg8.4) + 7632m10,6,2,2) + 129012125 4.4.4) + 106848m6.6 6,2)-

Proof. The group Gag is the subgroup of GL(C,4) generated by the following four

matrices. These can be seen explicitly in [1].

1 -1 -1 -1 0 ¢ 00 0100 1 000
11-1 1 -1 —1 - 0 0 0 1 000 0010
2(-1 -1 1 =1}’ 0 010} 0010} 0100

-1 -1 -1 1 0 001 0001 0001
Since i € Zs, these act on (25)4, and this induces an action on

H*(K((Z5)47 2)) ~ ZS[wla T2, T3, x4]-

The invariants of this action were determined by Maschke ([28]) to be the polynomials
stated in the theorem. Although he did not state them all explicitly, they can be easily
generated by: (a) define ¢, 1;, and x as on his page 501, then (b) define ®q,... , 4 as
on his page 504, and finally (c) let fy = —3®¢ and fs = Fy, fio = Fi2, and fog = Fg
as on his page 505. See also [33, p.287] for a reference to this work.

Actually, Maschke’s work and that of [33] involved finding generators for the com-
plex invariant ring. To see that these integral polynomials generate the invariant ring
over Zs, one must show that they cannot be decomposed over Z/5. For example,
one must verify that foq cannot be decomposed mod 5 as a linear combination of
fafiz, f2fia, faf2, fifs, and fJ. The need to do this was pointed out to the au-
thor by Kasper Andersen in a dramatic way, as will be described prior to 5.6. The
verification here was performed by Andersen using a Magma program.

Aguadé ([1]) constructed the 5-compact group (BX, X) corresponding to this mod-

ular reflection group. MW
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The approach based on the following proposition benefits from a suggestion of
Clarence Wilkerson.
Proposition 4.3. Let (BX,X) be a p-compact group corresponding to a reflection
group G acting on BT = K((Z,)",2). Suppose H*(BT;Q,)¢ = Q,[f1, ... , fx], where
fi is a polynomial in yy, ... ,y, with y; € H*(BT; @p) corresponding to the i factor.
Let K*(BT;QP) = (@p[[xl, ooy Ty] with x; the class of H — 1 in the i™ factor, where
H is the complex Hopf bundle. Let lo(x) =log(1 + ). Then

I(*(BAXV7 Zp) =~ @p[[fl(éo(l'l), . ,Eo(l’n)), e ,fk(go(flfl)? . ,go(]fn))]]ﬂzp[[l’l, Ce ,(L’n]].
Proof. The Chern character K*(BT; Q,) <X, H*(BT: Q,) satisfies ch(fy(z;)) = »; and
hence, since ch is a ring homomorphism, ch(f;(¢o(x1), ..., () = fj(y1, .-, Yn).

It commutes with the action of GG, and hence sends invariants to invariants. Indeed

K*(BT;Q,)¢ = Qu[fi(lo(z1), ..., Lo(x)), - fullo(x1), ..., Lo(zn))]-
(4.4)

The invariant ring in K*(BT};Z,) is just the intersection of (4.4) with Z[z1,... ,zy].
Finally we use a result of [24] that K*(BX;Z,) ~ K*(BT;Z,)¢. R

Thus with fy, fs, fi2, foo as in 4.2, we wish to find algebraic combinations of

fallo(z1), ... s lo(xg)), .., fao(lo(x1),. .., lo(xy))

which have coefficients in Zs. A theorem of [24] which states that for a p-compact
group BX there is an isomorphism K*(BX Zp) A~ Zp[[gl, ..., gk], and the collapsing,

for dimensional reasons, of the Atiyah-Hirzebruch spectral sequence
H*(BX; K*(pt; Z,)) = K*(BX;Z,) (4.5)

implies that the generators g; can be chosen to be of the form f;(xq,...,z,) mod
higher degree polynomials.
Finding these algebraic combinations can be facilitated by using the p-typical log

series

Ep@) = Z xp”/pn‘

120
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By [23], there is a series h(zx) € Z)[x] such that o(h(z)) = £,(x) and h(x) = x mod

(z2). Let o} = h(x;). For any c, € Q, with e = (e4, €5, €12, €39), We have

> cefallp(@1), o bp(wa)) - fao(lp(1), -, £p(w4)) (4.6)
= Y cefallo(xh), ... Lo())) -+ faollo(x)), ... , Lo(xy)) ™ (4.7)
where the sums are taken over various e. We will find ¢, so that (4.6) is in Z,[z1, . . . , z4].
Thus so is (4.7), and hence also Y- ce f4(lo(21), - - -, lo(x4))% -+ fao(bo(x1), ..., Lo(z4)),
since h(x) € Z[x].
A Maple program, which will be described in the proof, was used to prove the

following result.

Theorem 4.8. Let fy, fs, fi2, foo be as in 4.2, and let
F}' = Fj(l‘l, e ,1‘4) = fj(fg(l’l), e ,fg($4)).

Then the following series are b-integral through grading 20; i.e., their coefficients of

all monomials x* - - - x§* with Y e; < 20 are 5-integral.

_1ppm 1 _ 16 _ 4 /3 13 _ 57 2
F. 10F4 5F8 25F12 25F4F8+25F4 125F4Fl2 125F4F8

_ 1024 62 ;2 64 _ 4 5 42 12 _u 2 _ 72 .
125F4 125F8 125F20 625F4 125F4F12 25F4F8 125F8F12’

8 T2 4 21 .
Fg — S Fi1g — 52 Fg — 5o Fog — 15 FsFa;

272 1 4
Fig — £ F§ — £ Fog — 5: FsFaa.

Proof. As observed in the paragraph preceding the theorem, it suffices to show that
the same is true for Fj = f;(z; + 12}, x4 + £23). The advantage of this is
to decrease the number of terms which must be kept track of and looked at. We
work one grading at a time, expanding relevant products of F}’s as combinations of
monomial symmetric polynomials in the fixed grading, and then solving a system of
linear equations to find the combinations that work. We illustrate with the calculation
for modifications of Fj in gradings 8 and then 12.
In grading 8, we have

12

Fy = tms) — 2mean)
FS = m(g) + 14m(474) + 168m(2,272,2)

F42 = m(g) — 24771(57171,1) + 2m(4,4) + 144m(2727272)'
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We wish to choose a and b so that, in grading 8, %Fg + gﬁf = F, mod integers. Thus

we must solve a system of mod 5 equations for a and b with augmented matrix

1 1 4
0 —24|-12
14 2 0
168 144 | O

The solution is a = 1, b = 1/2. We could also have used b = 3 since we are working
mod 5.
Let Ei =F — %]542 — %ﬁs- In grading 12, we have
Fi = —%m(m) - %m(sA) - %m(ﬁ,zm) + %m(Q,l,l,l) + %m(5,5,1,1)
Fia = maz) — 33mys,q) + 330ma + 792m s 2.2.2)
FsFy = mag+ 15mga) + 42maa) + 168ms 209 — 12m91.1.1) — 168ms 511y — 2016m 3 3.3.3)
F} = maz) +3msa) + 6mag + 432me 2.2 — 36mo111) — 72m510) — 1728m33,3.3).-
We wish to choose a, b, and ¢ so that, in grading 12 LB, + %]58154 + %ﬁf = ]:Z

' 25
mod integers. Thus we must solve a system of equations mod 25 whose augmented

matrix is
1 1 1 —6
—-33 15 3 —60
330 42 6 0
792 168 432 | —480
0 —12 —36 60
0 —168 —72 12
0 —2016 —1728 0

The solution is a = 16, b = 7, and ¢ = —4.
We perform similar calculations for Fy in grading 12, then for F i ﬁé, and Fiy in
gradings 16 and then 20. W

By the observation in the paragraph involving (4.5), the modified versions of Fy, Fg,
and F, given in Theorem 4.8, and also Fy, can be modified similarly in all subsequent
gradings, yielding generators of the power series algebra K*(BXag; 25) which we will
call Gy, Gg, G12, and Gog. By [24], K*(Xa9; 25) is an exterior algebra on classes z3,
27, 211, and 219 in K'(—) obtained using the map e : X = YQBX — BX and Bott
periodicity B : K'(X) — K~1(X) by z; = B 'e¢*(G41). The following determination
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of the Adams operations is essential for our work on v;-periodic homotopy groups.

Here and elsewhere QK'(—) denotes the indecomposable quotient.

Theorem 4.9. The Adams operation ¥ in QKl(ng;Z5) on the generators z3, zr,

211, and zyg 1S giwen by the matriz

k3 0 0 0
1 1
13 LT K 0 0
241.3 8 1.7 16 7.11 81.7 81.11 11
Ups _ SpT 1o SET Sk k 0

92 13 1217 16 111 _ 64 119 1277 8711 _ 4119 11211 _ 1719 7.19
155 h 55k o5k 125k a5k a5k o5k sk sk k

Proof. We first note that
U (lo(2)) = Lo(v*x) = bo((2+1)"~1) = log((z+1)") = klog(z+1) = kly(x).
Since Fy; is homogeneous of degree 45 in {o(x;), Y*(Fy;) = k* F;;. We can use this
to determine 1% on the generators G; which are defined as algebraic combinations of
F,;’s. We then apply e* to this formula to obtain ¢* in K (Xa9; 25) Since e* annihi-
lates decomposables, we need consider only the linear terms in the expressions which
express (; in terms of Fy;’s. On the basis (over (@5) (e*(Fy),e*(Fg), e*(F1a), €*(F)),
the matrix of ¥ is D = diag(k*, k3, k'2,k%°). On the basis (over Zs)

(€"(Ga), € (Gs), €7 (Gr2), € (G20)),
it is P~1DP, where

1 0 0 O
p_| 5 1 00
16 8
- 5 1 0
T e
125 25 5

is the change-of-basis matrix, obtained using the linear terms in 4.8. The matrix in
the statement of the theorem is obtained by dividing P~*DP by k, since ¢* in K*(—)
corresponds to ¢*/k in K~1(—). MW

We can use Theorem 4.9 to obtain the v;-periodic homotopy groups of (Xa9)s5 as

follows.
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Theorem 4.10. The groups vy 'T.(Xa9)(5) are given by

0 t#3 (4)
7./5° t=3,15 (20)
v g1 (Xag) & 07 ran(Xg) A { Z/5min(B3+rs(t=T=45) t=17 (20)

Z/5min(12,3+l/5(t—11—4‘58)) t=11 (20)
Z/5min(20,3+l/5(t*19*12'516)) t=19 (20).

\I/5>T
(v2)T —2tr )
We form this matrix by letting £ = 5 and 2 in the matrix of Theorem 4.9 and letting

Proof. We use the result of [9] that vy 7a,(X)(5) is presented by the matrix

x = 2!, obtaining
125 —15600 —31274880 —9765631257408

0 78125  —78000000 —3051773400000
0 0 48828125  —3814687500000
0 0 0 19073486328125
88—z =24 —1344 —268704 (4.11)
0 128 — x —3072 —84480 ’
0 0 2048 — x —104448
0 0 0 524288 — x

Pivoting on the units (over Zs)) in positions (5,2) and (7,4) and removing their rows
and columns does not change the group presented. We now have a 6-by-2 matrix,
whose nonzero entries are polynomials in x of degree 1 or 2. If x % 3 mod 5, which
is equivalent to ¢ #Z 3 mod 4, the bottom two rows are (161 f; ) with u; units, and so
the group presented is 0.

Henceforth, we assume z = 3 mod 5. The polynomial in new position (5,2) is
nonzero mod 5 for such x, and so we pivot on it, and remove its row and column.
The five remaining entries are ratios of polynomials with denominator nonzero mod
5. Let p1, ..., ps denote the polynomials in the numerators. The group vy 17TQt(X29)(5)

is Z/5°, where e = min(v(p1(x)),... ,v(ps(z))), where x = 2'. We abbreviate vs(—)
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to v(—) throughout the remainder of this section. We have

p1 = —T71122941747658752 + 9480741773824512x — 740673838511992% + 339084418662
py = —66750692556800000 + 88979031748000002 — 695126401000002% + 31789306250>
ps = —8327872-10'° + 11101145 - 10%2 — 8673101562500022 + 397363281252

ps = 4-10" — 533203125 - 10! + 416564941406250002> — 190734863281252°
ps = 1099511627776 — 146567856128z + 114532454422 — 5264722 + *.

For values of m listed in the table, we compute and present in Table 4.13 the tuples

€, €1, €2, €3) SO that, up to units
( Y ) ’ ) h Y p 1 )
pi(2™ +y) = 5% + 5%y + 57y* + 59y° (4.12)

(plus y* if 7 = 5). Considerable preliminary calculation underlies the choice of these

values of m.

Table 4.13. Ezponents of polynomaials

1
m 1 2 3 4 5
3 3,2,1,0 00,7,6,5 o0,12,12,10 oc,21,20,19 o0,3,2,1
15 3,2,1,0 8,7,6,5 13,12,11,10 22,21,20,19 4,4,3,2
7+4-5% | 821,0 8,765 17,12,11,10 26,21,21,19 8,3,2,1
11+4-5% [12,2,1,0 12,7,7,5 13,12,11,10 o00,21,20,19 12,3,2,1
19+12-5% (23220 20,7,6,5 21,12,11,10 22,21,20,19 20,3,2,1

Recall that v(2%5" — 1) = i + 1, as is easily proved by induction. Thus

P2 = p(27 4 2" (2M 1)) = p(2" + 25 - ),
(4.14)

with u a unit. Hence
min{v(p;(2°7*7)): 1 <i <5} =3
since
p1(2¥729) = py (2% + 5%ju) = 5+ 5% - 5%ju + 5(5%ju)” + (5%u)”,
omitting some unit coefficients. Here we have set y = 5%ju in (4.12). Replacing 3 by

15 yields an identical argument. This yields the second line of Theorem 4.10.
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We use Table 4.13 to show

min{v(p;(219125°+207)) 1 1 < i < 5} = min(20,4 + v(j)) = min(20, 3 + v(205)).
(4.15)
Indeed, for v(j) < 16, the minimum is achieved when ¢ = 1, with the 4 coming as
2 + 2 with one 2 being from the 25 in (4.14) and the other 2 being the first 2 in the
last row of Table 4.13. If v(j) > 16, the minimum is achieved when i = 2, using the
first 20 in the last row of 4.13. The last case of Theorem 4.10 follows easily from
(4.15), and the other two parts of 4.10 are obtained similarly.
To see that vy 'ma_1(Xag) ~ v7 ' (Xag), we argue in three steps. First, the two
groups have the same order using [9, 8.5] and the fact that the kernel and cokernel

of an endomorphism of a finite group have equal orders. Second, by [16, 4.4], a
5

presentation of vy 'my_1(Xa9) is given by 72 i.e. like that for vy ma(Xa)

_ 2t> ’
except that the two submatrices are not transposed. Third, we pivot on this matrix,
which is (4.11) with the top and bottom transposed, and find that we can pivot on

units three times, so that the group presented is cyclic. W

Next we provide the evidence for Conjecture 4.1 in the following result.

Proposition 4.16. Let By = B(7,15,23,39) denote the space constructed just before
Congecture 4.1. The Adams modules K*(Xag; Zs) and K*(By; Zs) are isomorphic.

Proof. We use the 5-typical basis of QK'(SU(20)) using powers of y = e,({o(z)).
Here e,(—) is the series inverse to £,(—), and z is the usual generator of QK (SU(n)).
Then *(y) = e,(kl,(y)) only involves powers y'*™P~1). See [32, pp.660-661] for a
discussion of this. We compute 12 on the basis (i3, 37, 4, y'*, y*°) to be given by

8 0 0 0 0
—72 128 0 0 0
U2 = [ 1368 —2688 2048 0 0 .
—32472 67200 —67584 32768 0 (4.17)

865152 —1841280 2095104 —1474560 524288
We find that (0,0,0,1,3)7 is an eigenvector of ¥? for A\ = 231, We take the quotient

by this vector, using (y®,y", y'!, y') as the new basis. To obtain the matrix of 1% on
this basis, we subtract 3 times the fourth row of (4.17) from the fifth, and remove the
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fourth row and column, obtaining

8 0 0 0
v | -2 128 0 0
BT | 1368  —2688 2048 0

962568 —2042880 2297856 524288
Let W% denote the transpose of the bottom half of (4.11) without the —z part.
We desire an invertible matrix @ over Z) such that ¥5Q = QU%. To find such
a @ we find matrices Q; and @, whose columns are eigenvectors of ¥% and ¥%,

respectively. These columns can be multiplied by any scalars. We can find scalars so
that Q := Q1Q5 "' has entries in Zsy with units along the diagonal. We find that

5. 0 0 0
o— |22 -12 0 0
a8 2 -2 0

30 16 —18 —4
works, and it also satisfies ¥%Q = QU% for any k. W

Since vi-periodic homotopy groups can be computed from Adams modules, we also
have vy ', (Xa9)(5) & v1 ' Tx(Bo) (5)-

For the cases discussed in Table 3.2, we could always construct equivalences from
a factor B(—,—,—) to (X,), because it was always the case that if the B-space
had a d-cell, then m4_1((X,),) = 0. This will not be the case when trying to relate
By = B(7,15,23,39) and (Xy9)s5, primarily because p = 5 is so small compared to the
dimensions of some of the cells in By. For example, localized at p = 5, m37(S7) ~ Z/5,
the first unstable class. See, e.g., Diagram 3.4 or [5, 5.16]. This gives a nonzero
element in 737(Xa9) which provides a possible obstruction to extending a map from
the 37-skeleton of By over the 38-cell representing the class x15x93. A similar problem
occurs due to my5(S7) — m45(Xag) being nonzero, giving a possible obstruction to
extending over x7x39. Also, a3 on S?3 gives an apparent element in mgg(Xog) which
is a possible obstruction to extending over x;xo3139. It is conceivable that more
delicate arguments such as that on [29, p.661] might show that these obstructions
can be removed. By [9, 3.4,8.1] and our Proposition 4.16, the associated v;-periodic
spectra @By and ®Xog are equivalent. However, the fact that, as we shall see at the

end of this section, there is not a space related to SU(N) which might be equivalent
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to (X31)5 tempers a belief that there should be a general reason for By and (Xag)5 to
be equivalent.

Note that the entry in position (4, 3) of the matrix of 4.9 implies that the 39-cell
of (Xa9)5 is attached to the 23-cell by ay, which is not detected by primary Steenrod
operations. Note also that the spherical resolvability of (Xs9)s5 and also the spaces
(X31)5 and (X34)7 follows from [15].

We can determine the Adams operations and v;-periodic homotopy groups of (X3;)s
by an argument very similar to that used above for (Xa9)s5. We shall merely sketch.

The analogue of Theorem 4.2 is

Theorem 4.18. There is an isomorphism H*(BXs1:Zs) ~ H*(BT;Zs)%", where
1000

Gs1 has the four gemerators given for Gog in the proof of 4.2 and also (8 59 8).
00 0 1

Then H*(BT; 25)631 1s a polynomial ring on the generators fg, fi2, and fao given in
4.2 together with

foa = myaq) — 66m204) + 1023m168) + 2180m(12,12) + 129315618 8 4,4
+267096m (12,4,4,4) + 2121984m6.6,6,6) + 620352m(10,66,2) — 4032 (146,22
—190080m2(10,10,2,2) — 11892m(12.8 4y — 4938m(16,4,4) — 24534Mm(38 8)
—2304m(18,2,2,2)-

The analogue of Theorem 4.8 is

Theorem 4.19. Let fg, fi2, f20, foa be as in 4.18, and let
Fj = fj(go(xl)a . >€0<x4))'
Then the following series are 5-integral through grading 2.
Fy— $Fi— £F — £Fy — ZFiFy — & F - B - 8877,
Fip — %Fg - %Fm - %FSFH - %FM - OF— L F

125 125° 12
_3 _2p3
F20 5F24 5F8'

The analogue of 4.9 is
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Theorem 4.20. The Adams operation ¥* in Kl(Xgl;Z5) on the generators z7, z11,

219, and zo3 1S given by the matriz

k7 0 0 0
817 _ 811 L1l 0 0

5 5
Qk7 . §k11 o i]{;19 ékll o ékw ]{319 0

27977 _ 1687.11 12 19 99 723 21111 _ 3719 18723 3719 _ 3123 1.23
125k 125k 125k 125k k k k k 5k k

The analogue of Theorem 4.10 is

Theorem 4.21. The groups ’1)1_17T*(X31)(5) are given by
0 t#£3 (4)
Z/5 t=7,15 (20)
0 a1 (Xan) & 07 ' (Xi) A { Z/5minssne 11850 =11 (20)
Z/5min(12,3+1/5(t719716~58)) t=19 (20)
Z/5min(20,3+u5(t—23—16-516)) t =23 (20)

One might hope that, analogously to 4.1, there might be a space B(15,23,39,47)
related to SU(24) and equivalent to (X3;)5. This cannot happen. Diagram 4.22, in

which straight lines denote a; attaching maps and curved lines as, shows the ways
in which the generating cells of (X3;)5 and one factor of SU(24)/SU(7) are attached
to one another. Because the 31-cell is attached to a lower cell and has a higher cell
attached to it, there cannot be a map in either direction between these spaces sending
generators across. This is what puts a damper on any hope that all p-compact groups

are related to unitary groups.

Diagram 4.22. Attaching maps of generating cells

(0—(2) () (1) cxs
@ St @ @ U/(24)/SU(7)
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5. THE 7-PRIMARY MODULAR CASE

In this section, we first give in Theorem 5.1 new explicit formulas for the six poly-
nomials which generate as a polynomial algebra the invariant ring of the complex
reflection group Gy of [33], called the Mitchell group in [14]. Over Z;, the invariant
ring of (i34 is also a polynomial algebra, but the generators must be altered slightly
from the complex case, as we show prior to 5.6. Next we use this information to find
explicit generators for K*(BXay; 27) in 5.6, and from this the Adams operations in
QK (Xay; 27) in 5.15. These in turn enable us to compute the v,-periodic homotopy
groups vy ', (X34) (). Finally, we show in 5.18 that the Adams module QK™ (X4 Z7)
is isomorphic to that of a space formed from SU(42); similarly to 4.1, we conjecture

in 5.17 that this isomorphism is induced by a homotopy equivalence.

Theorem 5.1. The complez invariants of the reflection group Gsy (defined in the

proof) form a polynomial algebra

Clzy, ... >$6]G34 ~ C[fs, f12: f1s, faa; [30, fao]

with generators given by
k

for = (L (=127 B)mqa+3 (5) (L (=1) 27" mioras a0 +3_(e)me,
s=1 e

where e ranges over all partitions e = (eq, ... ,e,) of 6k with 3 < r < 6 satisfying e; =
e; mod 8 for alli,j, and e; =0 mod 3 if r < 6. Here also (e) denotes the multinomial

coefficient (eq + -+ +e.)!/(e1! -+ e.), and me the monomial symmetric polynomial,

Er
roe

which is the shortest symmetric polynomial in x4, ... ,xe containing x7* - - x
For example, we have
) fG = —4m(6) + 40m3,3 -+ 720m(1,171’171’1);
o fio =136m12) — 26 (132)m(9,3) + 28 (162) m6,6) + 2. (€)Me, Where e
ranges over

{(6,3,3), (3,3,3,3), (2,2,2,2,2,2), (7,1,1,1,1,1), (4,4,1,1,1,1)}.
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o fis = (1=5:27)mas + () (14272 ms.z+ (§) (1-272)mae) +
(198> (1 +27%)m99) + > (€)me, where e ranges over
{(12,3,3), (9,6,3), (9,3,3,3), (6,6,6), (6,6,3,3), (6,3,3,3,3), (3,3,3,3,3,3),
(13,1,1,1,1,1), (10,4,1,1,1,1), (7,4,4,1,1,1), (4,4,4,4,1,1), (7,7,1,1,1,1),
(8,2,2,2,2,2), (5,5,2,2,2,2)}
Proof of Theorem 5.1. As described in [33], the reflection group G4 is generated by
reflections across the following hyperplanes in C% x; — z; = 0, 21 — wxy = 0, and

1429+ 25+ 24+ 25+ 26 = 0. Here w = e2™/3. Tt follows easily that G4 is generated

by all permutation matrices together with the following two:

0 w2 0000 111111

w 0 0000 111111

0 01000 ;o 11l

0 0 0100’ 311 11111 (5.2)
0 0 0010 111111 '
0 0 0001 111111

In [14], Conway and Sloane consider G4 instead as the automorphisms of a certain
Z|w]-lattice in CO. The lattice has 756 vectors of norm 2. There are none of smaller

b in another,

positive norm. 270 of these vectors are those with w® in one position, —w
and 0 in the rest. Here, of course, a and b can be 0, 1, or 2. The other 486 are those
of the form j:\/%fg(w‘“, ... ,w) such that 3 a; = 0 mod 3.

As a partial verification that this lattice approach to Gs4 is consistent with the
reflection approach, one can verify that the reflection matrices permute these 756
vectors. It is obvious that permutation matrices do, and easily verified for the first

matrix of (5.2). The second matrix of (5.2), which has order 2, sends
e (w,w?0,0,0,0) to A5(w? w,1,1,1,1);

\/7
. \/%73(1,1,1, 1,1,1) to —ﬁ(l, 1,1,1,1,1);
. \/%fg(l,l, L,w,w,w) to —ﬁ(w,w,w, 1,1,1);
. \/%—3(1, 1, w,w,w?, w?) to itself.

After permutation, negation, and multiplication by w, this takes care of virtually all

cases.
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Let

pm(.fljl, e 7.CE6) = Z (/lel + -+ v6x6)m, (53)

(v1,..-,06)
where the sum is taken over the 756 vectors described above. Then p,, is invariant
under G4 for every positive integer m. It is proved in [14, Thm.10] that the ring of

complex invariant polynomials is given by

Cla1, ... ,26)%** = C[ps, pr2, P18, P24, P30 Paz)- (5.4)

In [14], several other lattices isomorphic to the above one are described, any of
which can be used to give a different set of vectors v and invariant polynomials
Pm, still satisfying (5.4). The one that we have selected seems to give the simplest
polynomials; in particular, the only ones with integer coefficients.

We have pg, = S1 + Sz, where Sy = 3, 32 o (wa; — wba;)®, with 1 < i,5 <6,

and
2 2
Sy = (—3)3k Z (W + -+ Wy + w’“l""’a5x6)6k.
a; =0

The coefficient of 2 on S, is due to the +1. Note that the sum for S; has 6 - 5 - 32
terms, while that for S, has 3° terms. Next note that if a term 7% occurs in either
sum, then so does (wT)% and (w?T)%, and all are equal. Thus we obtain S; =
32 iz Zgzo(%‘ — wbxj)Gk and
9 2
Sy = 37(_3)% Z (r1 + w?xg + -+ - + W™x5 + w_‘”_"’_“5x6)6k.

We simplify S; further as

ag,... ,a5=0

2

6k
S, = 32(_1)%6;) fox?k—e Wb
(=0

i#j b=0

2%k
= oSS (#) S
s=0 i#£j
k
= 18(5m6k + Z(_l)s(gi)m(6k73s,3s))'
s=1
At the first step, we have used that >7_, w” equals 0 if £ # 0 mod 3, and equals 3 if

¢ =0mod 3. At the second step, we have noted that }-,; x?sx?k_?’s equals 1 (gr—34,35)

if s & {0,k,2k}, it equals 2m sk 3k if s = k, and equals 5mygr) if s = 0 or 2k.
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The sum Sy becomes
2 2

6 €2 —€, a e5—€; a, e e
S = g (6 X () Y (g
e a2=0 a5=0
6 e €
- e X (e

Then (—27)%(S; +S2)/486 equals the expression which we have listed for fg in the
statement of the theorem. We have chosen to work with this rather than pg itself for
numerical simplicity. It is important that the omitted coefficient is not a multiple of
7.

For good measure, we show that (5.3) is 0 if m # 0 (6). If m # 0 mod 3, then
replacing terms 7™ by (wT')™ leaves the sums like S; and Sy for (5.4) unchanged
while, from a different perspective, it multiplies them by w™. Thus the sums are 0.

3s,.m—3s

If m = 3 mod 6, the term in S; corresponding to - x;°z

sign to that corresponding to Y xm"g’sx;, and so S; = 0. For Sy, the (£1)™ will cause

%

occurs with opposite

pairs of terms to cancel. W

Remark 5.5. The only other place known to the author where formulas other than
(5.3) for these polynomials exist is [26], where they occupy 190 pages of dense text

when printed.

As pointed out by Kasper Andersen, fi — (fs)7 is divisible by 7. This is easily seen
by expanding (fs)" = (X (vi21 + - - - +v626)°)" by the multinomial theorem. The need
for this became apparent to Andersen, as the author had thought that the invariant
ring of (34 over Zr was 27[ f6,- - faz], and this would have led to an impossible
conclusion for the Adams operations in QK (Xsy; 27)

Let hyy = %( fi2 — (fs)7). Then we have the following result, for which we are

grateful to Andersen.

Theorem 5.6. The invariant ring of Gs4 over Ly is given by

Z7[961, e ,$6]G34 = Z?[fﬁ, fi2, fis, faa, f30, h42].

Proof. A Magma program written and run by Andersen showed that each of these
asserted generators is indecomposable over Z/7. (This is what failed when f;o was
used; it equals (fs)” over Z/7.) Thus the result follows from (5.4). W
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Since f3g is invariant under Gy, it follows from (5.4) that it can be decomposed
over C in terms of fs, fi2, fis, fos, and f3p. The nature of the coefficients in this
decomposition was not so clear. It turned out that all coefficients were rational

numbers which are 7-adic units. We make this precise in

Theorem 5.7. f35 can be decomposed as

@1 fof30 + @2 fr2fon + asfis + aafe foa + G5 fofrzfis
+6fvy + @ fo fis + as S T + a0 f6 fr2 + @0 fg
with
¢ = 944610925401/15161583716
g2 = 733671261/19519520
g3 = 243068633/9781739

g1 = —133840666859131062549/73986709144034080
g5 = —1758887990521258018071215403/629320589839873719708800
g = —1602221942044323/4879830000000

g = 4011206338081535787030788541/114421925425431585401600

gs = 701461342458322269763709951654931/15733014745996842992720000000

g = —11844219519446025955021712628669,/22348032309654606523750000
G0 = 26589469730264682368719198549833,/22348032309654606523750000

Each of these coefficients q; is a 7-adic unit; i.e. no numerator or denominator is

divisible by 7.

Proof. The ten products, fgf30,- .., f¢, listed above are the only ones possible. We
express each of these products as a combination of monomial symmetric polynomials

me. We use Magma to do this. The length of my,,.. .,) is defined to be r. We only

kept track of components of the products of length < 4. This meant that we only
had to include components of length < 4 of the various fg; being multiplied.

There were 34 me’s of length < 4. These correspond to the partitions of 36 into
multiples of 3. (Note that monomials with subscripts = 1 or 2 mod 3 only occur for
us if the length is 6. Not having to deal with them simplifies our work considerably.)

Indeed, there was one of length 1, six of length 2, twelve of length 3, and fifteen of
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length 4. Magma expressed each monomial such as fgf30 or f¢ as an integer combi-
nation of these, plus monomials of greater length. We just ignored in the output all
those of greater length. The coefficients in these expressions were typically 12 to 15
digits. We also wrote f3s as a combination of monomial symmetric polynomials of
length < 4, ignoring the longer ones. This did not require any fancy software, just
the multinomial coefficients from Theorem 5.1.

Now we have a linear system of 34 linear equations with integer coefficients in 10
unknowns. The unknowns are the coefficients ¢; in the equation at the beginning of
5.7, and the equations are the component monomials of length < 4. Miraculously,
there was a unique rational solution, as given in the statement of this theorem.

If it were not for the fact that the Conway-Sloane theorem 5.4 guarantees that there
must be a solution when all monomial components (of length < 6) are considered,
then we would have to consider them all, but the fact that we got a unique solution
looking at only the monomial components of length < 4 implies that this solution

will continue to hold in the other unexamined components. W

Next we wish to modify the generators in 5.6 to obtain generators of QK (Xzy; 27)
Similarly to 4.8, we let {y(z) = In(1 + x), and

Fy = F(z1,... ,26) = fillo(z1), ..., fo(lo(ws)))- (5.8)
A major calculation is required to modify the classes F; so that their coefficients
are in Zz; i.e. they do not have 7’s in the denominators. As observed after (4.5), it

will be enough to accomplish this through grading 42 (with grading of x; considered
to be 1).

Theorem 5.9. The following expressions are 7-integral through grading 42:
o F3o+ %F36 + %F@;
o Fou+ 3F30+ 33 Fys + 25 Fua;
o Fig+ 2Fy + 2 Fy + 157F36 + 32 Fys;
o Fip+ F18 + DFy+ 109}750 + 1391F36 + 6201F42;
o Fy+ 1F12 + F18 i 204F24 i 1107F + 9682F 4 100682F
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It was very surprising that just linear terms were needed here. Decomposable
terms were certainly expected. The analogue for G99 in 4.8 involved many decom-
posables. It would be interesting to know why Theorem 5.9 works with just linear

terms; presumably this pattern will continue into higher gradings.
Proof of Theorem 5.9. Similarly to the proof of 4.8, we define
E = F;(l’h e 71)6) = fi<£p(l‘1), e ,EP(IG))7

and observe that a polynomial in the F}’s is 7-integral if and only if the same poly-
nomial in the F;’s is.
Next note that in the range of concern for Theorem 5.9 l7(x) = x + 27/7. If we
define
hi = hi(x1, ..., 26) = fi(z1 +2],... 26+ 35),

then 5.9 is clearly equivalent to

Statement 5.10. Fort > 1 and grading < 42,

® hsg + bhsg + 22hys = 0 mod 7t in grading 30 + 6t;

® hoy + 4hsg + 45hsg + 104hy = 0 mod T8 in grading 24 + 6t;

® hig + 3hoy + 20hsg + 15Thsg + 526hyy = 0 mod T' in grading
18 + 6¢;

® Nio + 2hig + 45hos + 109hs0 + 1391hss 4+ 62014 = 0 mod T8 in
grading 12 + 6t;

® hg+ hio+ 22hq1g + 204hoy + 1107hgy + 9682h36 + 100682h4s = 0
mod T in grading 6 + 6t.

We use Maple to verify 5.10. Our f;’s are given in Theorem 5.1 in terms of me’s. To
evaluate me(z1+27, ..., xg+xf), the following result keeps the calculation manageable
(e.g. it does not involve a sum over all permutations). Partitions can be written
either in increasing order or decreasing order; we use increasing. If (aq,...,aq,) is
an r-tuple of positive integers, let s(ay,... ,a,) denote the sorted form of the tuple;
i.e. the rearranged version of the tuple so as to be in increasing order. For example,
s(4,2,3,2) = (2,2,3,4).
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Proposition 5.11. The component of me,, . (1 + 27,... 26 + x§) in grading
> e; + 6t is

ZP(61+6j1,...,eT+6JT) e (e, | |
3 P(ey,... ,e) 1 j, s(e14+671,... ,er+6jr)

where j = (ji1,. .. ,Jr) ranges over all r-tuples of nonnegative integers summing to t,

and P(ay, ... ,a,) is the product of the factorials of repetend sizes.

For example, P(4,2,3,3) = 2! because there are two 3’s, P(3,1,3,3,1,2) = 312!,
and P(3,4,2,1) = 1.

Example 5.12. We consider as a typical example, the component of
m(3,379’15) (i[fl + fﬂz, ..., Tg + l‘g)

in grading 42. Table 5.13 lists the possible values of j and the contribution to the sum.

The final answer is the sum of everything in the right hand column.

Table 5.13. Terms for Example 5.12

J term
(2,0,0,0) | (3)ma015.15
(0,2,0,0) (3) ms39.15,15
0,0,2,0) | (3)msz1521
(0,0,0,2) | () msso2r
(1,1,0,0) | 3-3-3mg99.15
(1,0,1,0) | 3-9m3915.15
(1,0,0,1) | 3-15m3g99.21
(0,1,1,0) | 3-9m3915.15
(0,1,0,1) | 3-15m399.91
(0,0,1,1) | 9-15m3315.21
Proof of Proposition 5.11. me,.... ey (x1+ 27, ... ,x6 + ) is related to
e e e1+6 e e1+12 er er\ .er
Sl + (225 + () -0ty + (et + )

summed over all permutations o in .. If ¢ values of e; are equal, then (5.14) will
give t! times the correct answer. That is the reason that we divide by P(e). If

(e14+671, . .. ,e,+67,) contains s equal numbers, then the associated m will be obtained
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from each of s! permutations, which is the reason that P(e;+671, ... ,e.+67,.) appears

in the numerator. W

At first, mimicking 4.8, we were allowing for products of A’s in addition to the
linear terms which appear in 5.10, but it was turning out that what was needed to
satisfy the congruences was just the linear term. If just a linear term was going to
work, the coefficients could be obtained by just looking at monomials of length 1.
They were computed by Maple, using that, by 5.1 and 5.11, the coefficient of mgy61)
in hey, is (14 (=1)*27%1.5) (Gtk). Write the kth expression from the bottom of 5.10
as 3 ;>0 ajkherte;. We require that the coefficient of mgpi6s) in Z;ZO a;j iher+e; is 0
mod 7¢. But this coefficient equals

t
E%aj,k (W) (1 (—1)FHI27 I ),
]:

We solve iteratively for a;j, starting with ap, = 1, and obtain the values in 5.10.
Note that it first gives a;; = 1 mod 7. If we had chosen a value such as 8 or —6
instead of 1, then the value of as; would be different than 22. So these numbers
a; are not uniquely determined. These different choices just amount to choosing a
different basis for QK (Xs4; Zr).

Verifying Statement 5.10 required running many Maple programs. For each line of
5.10, a verification had to be made for each relevant t-value, from two t-values for
the first line down to six t-values for the last line. Moreover, for each of these pairs
(line number, t-value), it was convenient to use a separate program for monomials
of each length 2, 3, 4, and 5, and then, for monomials of length 6, it was done
separately for those with subscripts congruent to 0, 1, or 2 mod 3. Thus altogether
(24+3+4+54+6)(443) = 140 Maple programs were run. The programs had enough
similarity that one could be morphed into another quite easily, and a more skillful
programmer could incorporate them all into the same program.

Note that expanding from f; to h; does not change the number of components
in monomials, nor does it change the mod 3 value of the sum of the subscripts (i.e.
exponents) in the monomials. This is simpler than the situation in the proof of 5.7.
The algorithm is quite easy. For each combination of A’s in 5.10, replace each hg; by

the combination of me’s in fg; in 5.1, but expanded using 5.11. W
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To obtain the Adams operations in QK™ (X3y; Zy), we argue similarly to the para-
graph which precedes Theorem 4.9. First note that F35 decomposes in terms of Fg;’s
exactly as does fsg in terms of fg’s in 5.7. We can’ modify by decomposables in
dimensions greater than 42 to obtain 7-integral classes Gg, G2, Gig, Gas, and Gzg
which agree with the classes of 5.9 (with F3s decomposed) through dimension 42.
There is also a 7-integral class G4 which agrees with £ (Fj, — (F5)") in dimension 42.
These generate K*(BXsy; Z7) as a power series algebra. As in the preamble to 4.9,
then z; := B~te*(G;,1) fori = 5, 11, 17, 23, 29, and 41 form a basis for Q K*(X3y; 27),
and e* annihilates decomposables.

Similarly to the situation for (Xag)s in the proof of 4.9, if we let

5
1 0 0O 0 00
% 1 0O 0 00
% % 1 0 0 0
P =
204 45 3 1 0 0’
343 49 7
1107 109 20 4 1
2401 343 49 7
16647 1399 183 6 1 1
16807 2401 343 49 7

then the matrix of ¢* on the basis {zs, 211, 217, 203, 2029, 241 } 18
P*ldiag<k_5’ ]{;117 ]{;177 k’23, ]{729, l{?41)P.

The entries in the last row of P are 7 times the coefficients of Fjs in 5.9 reduced mod
1. Those coefficients were multiplied by 7 because z4; is related to %F42 rather than
to Fjyo.

Using this, we compute the v;-periodic homotopy groups, similarly to 4.10. Note

the remarkable similarity with that result. Here, of course, v(—) denotes the exponent

of 7 in an integer.

"But we need not bother to do so explicitly.
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Theorem 5.15. The groups vy 'm.(X34)(r) are given by

0 t#£5 (6)
77 t=5,35 (42)
Z/7min 125+0(t-11-127%) 4t — {1 (49

( (42)
oy M1 (Xaa) m 07 0y (X34) =2 { 7/ 7085+ (-1T-18T) - ¢ = 17 (42)

Z/7min(24,5+1/(t723718-718)) t =93 (42>
Z/7min(30,5+u(t—29—12.724)) t =929 ( )
Z/7min(42,5+u(t—41—24-736)) t =41 ( )

Proof. The group vy 'ma;(X)(7) is presented by < ( w3()1§71T3t I) , since 3 generates Z/49*.
We let « = 3" and form this matrix analogously to (4.11). Five times we can pivot on
units, removing their rows and columns, leaving a column matrix with 7 polynomials
in . The T-exponent of vy 7y (X )(r) is the smallest of that of these polynomials
(with z = 3'). This will be 0 unless 2z = 5 mod 7, which is equivalent to t = 5
mod 6. We find that two of these polynomials will always yield, between them, the
smallest exponent. Similarly to (4.12) and Table 4.13, we write these polynomials as
pi(3™ + y) for carefully-chosen values of m. Much preliminary work is required to
discover these values of m. Ignoring unit coefficients and ignoring higher-power terms
whose coefficients will be sufficiently divisible that they will not affect the divisibility,
these polynomials will be as in Table 5.16.

Table 5.16. Certain p;(3™ +vy), (linear part only)
m D1 D2

5, 35 T+ Ty 2R 4Ty
11+12-75 | 72471y 7124 7y
17 +18- 712 | 718 4 71y 718 4 71y
234+ 18- 718 | 75 4 7y T 4 Ty
29 £ 12724 | L4 7hy 730 47y
41 + 24 - 736 743 + 74y 742 + 711y

The claim of the theorem follows from Table 5.16 by the same argument as was

used in the proof of 4.10. For ¢ in the specified congruence, if 3* = 3™ + y, then
v(y) = v(t —m)+ 1 > 2, similarly to (4.14). For example, if ¢ = 11 mod 42, and
3t = 31127 Ly then v(y) = v(t — 11 — 12 - 7%) + 1. Thus min(v(p,(3")), v(p2(34)))
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will be determined by the 7° in p; if ¢ = 5,35 (42), while in the other cases, it is
determined by the 7%y in p; or the constant term in p,.

The groups v; ', _1(X34) are cyclic by an argument similar to the one described at
the end of the proof of 4.10, and have the same order as vy 17r2t(X34) for the standard

reason described there. W

Similarly to the discussion preceding Conjecture 4.1, one of the factors in the prod-
uct decomposition of SU(42)7 given in [29] is an H-space BZ(7) whose F7-cohomology
is an exterior algebra on classes of grading 11, 23, 35, 47, 59, 71, and 83, and which
is built from spheres of these dimensions by fibrations. Using [36], we can obtain a
degree-1 map BI(7) — S™. Let B; := B(11,23,35,47,59, 83) denote its fiber.
Conjecture 5.17. There is an equivalence (X34)7 =~ Br.

The evidence for this conjecture is the following analogue of Proposition 4.16.

Proposition 5.18. There is an isomorphism of Adams modules K*(Xsy; Z7) ~ K*(By: Z7).

Proof. We argue exactly as in the proof of 4.16. We compute ¥ on the basis
(v, y™ Ty y® Pyt of QK(SU(42)) where y = e,(f()). Then (0,0,0,0,0,1,5)"
is an eigenvector for A = 33°. Quotienting out by this vector, we obtain as the trans-
pose of the matrix of ¢ on this basis of QK'(Br;Z;) the following matrix (¢°)% .

(We write the transpose for typographical reasons.)
3% —126360 118399320 —136947072600 176770713576600 354126788968985033040

0 3t —202656168 253117553832  —340318273704552 —711333125213838324912
0 0 347 —228319808184  356407220575224  855037442924642953872
0 0 0 3% —225190483754184 —736156248630810154992
0 0 0 0 320 453306387710146810320
0 0 0 0 0 34

Let ©% denote the matrix on X34. Using eigenvectors of the two matrices similarly
to the proof of 4.16, we find that the matrix Q below satisfies Y% Q = Q@Dg? for all
k, and has diagonal entries # 0 mod 7. Finding such a matrix ) was by no means

automatic; it required simultaneous satisfying of many congruence equations.

5/2 0 0 0 0 0
—95/2 66 0 0 0 0
| —81005 138611  —88219 0 0 0
@= 232625/2 —210177 173677  —55946 0 0

—253775 487751 507389 312395 —85347 0
301425  —592328 668516 —528725 314505 24324
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