FROM REPRESENTATION THEORY TO HOMOTOPY GROUPS

DONALD M. DAVIS

ABSTRACT. Bousfield recently gave an explicit formula for the
odd-primary v;-periodic homotopy groups of a finite H-space in
terms of its K-theory and Adams operations. In this paper, we
apply his result to give explicitly the vi-periodic homotopy groups
of Fg localized at 3 and at 5, thus completing the determination of
all odd-primary v;-periodic homotopy groups of all compact simple
Lie groups, a project suggested by Mimura in 1989.

The method involves no homotopy theoretic input and no spec-
tral sequences. The input is the second exterior power operation in
the representation ring of Eg, which we determine using specialized
software. This can be interpreted as giving the Adams operation
1/12 in K(Eg)

Eigenvectors of 1% must also be eigenvectors of ¢* for any k.
The determinant of the matrix of these eigenvectors is closely re-
lated to the homotopy decomposition of Fg localized at each prime.
By taking careful combinations of eigenvectors, we obtain a set of
generators of K (FEg) on which we have a nice formula for all Adams
operations. Bousfield’s theorem allows us to obtain from this the
v1-periodic homotopy groups.

1. INTRODUCTION

The p-primary v;-periodic homotopy groups of a space X, denoted v, ', (X;p) or
just vy 'm,.(X), were defined in [17]. They are a localization of the actual homotopy
groups, telling roughly the portion which is detected by K-theory and its operations.
If X is a compact Lie group or spherically resolved space, each v; 'm;(X;p) is a direct
summand of some actual homotopy group of X.

By use of a combination of homotopy-theoretic and unstable Novikov spectral se-
quence (UNSS) methods, the groups vy 'm,(X;p) were computed by the author and

coworkers for the following compact simple Lie groups:
1991 Mathematics Subject Classification. 55T15.

Key words and phrases. vi-periodic homotopy groups, exceptional Lie groups,
representation theory.



9 D. DAVIS

e X a classical group and p odd ([14]);

e X an exceptional Lie group with H,(X;Z) p-torsion-free ([10]);
e (SU(n) or Sp(n), 2) ([6],[9]);

o (G2,2) ([18]), (Fy or Eg, 3) ([5]), and (E7,3) ([16]).

In [12], Bousfield takes a new approach to vi-periodic homotopy groups. He shows
that if X is a 1-connected finite H-space with H,(X; Q) associative, and p is an odd
prime, then v; 'm,(X;p) can be obtained explicitly from (K*(X; Zp), P "), where
r is a generator of the group of units (Z/p?)*. We will review his result in Theorem
4.1.

Let X be any compact simple Lie group, and p an odd prime. In this paper,
we will show how to compute the second exterior power A? of generators of the
representation ring R(X), and use this to find a set of generators of K*(X; Zp) on
which the Adams operations 1* behave in a nice way. From this, we use Bousfield’s
theorem to determine vy 'm,(X;p). This approach is totally algebraic. There is no
homotopy theory (except that which went into proving Bousfield’s theorem) and no
UNSS.

We have used this approach to check the results obtained earlier by homotopy
theory and the UNSS for (X,p) if X = Gy, Fy, Eg, or E7, and p > 3, and X = Ey
and p > 7. All results are in agreement, except for one minor mistake in [5] in
vy ' (Fy; 3), which will be discussed in Section 8. Also in Section 8 we will show
how this new approach resolved two minor matters for (F7,3) which had been left
unresolved in [16].

In this paper, we will focus our attention on the calculation of v; 'x,(Es;5) and
vy 'm.(Fs; 3), both of which are new. A main impediment toward finding v, ', (Eg; 5)
had been uncertainty about a product decomposition which had been claimed by
Harper in 1974 in [20, 4.4.1(b)]. In 1987, Kono questioned Harper’s proof, and Harper
agreed to Kono that his proof was flawed. Our methods show that indeed Harper’s
claim was incorrect; the asserted product decomposition does not exist. This will be
explained more fully in Proposition 3.6.

Our main results are as follows, but we feel that the new methods introduced to
obtain them are of much more interest than the results themselves. Let v,(—) denote

the exponent of p in an integer.
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Theorem 1.1. Let (m, k), = min(vs(m — k) +r,k). Then
—1 —1
vp o (E8;5) A~ vy mom-1(Es; D)

0 if m s even
Z/5max(<m,7>4,<m,11)4,<m719)4,(m,23>4) me = 3 mod 4.

If m =1 mod 4, then v 7o (Fs;5) ~ Z/5° ® Z/5, and v ' Tom_1(Fs; 5) ~ Z /5!,

where

Q

e = max({m, 13)a, (m, 17)2, (m, 29),).

Theorem 1.2. If i = 3,4 mod 4, then vy 'm;(Es;3) = 0. For any integer k,

Uflﬂ'4k+1(E8; 3) ~ U;17T4k+2(Eg; 3) ~ 367

where
(min(7 + vy(k —9 —33),21)  if k=0 mod 9
6 if k=1 mod 3
. min(9 + v3(k — 11), 24) if k=2 mod 9
min(7 + v3(k — 6 —2-37),15) if k= 3,6 mod 9
min(10 + v3(k — 14), 30) if k=15 mod 9
min(9 + vs(k — 8), 18) if k=8 mod 9.

\

This completes the computation of v; 7, (X;p) for all compact simple Lie groups
X and odd primes p, a project which was suggested to the author by Mimura in 1989.
The situation when p = 2, which was part of Mimura’s suggested project, is much
more delicate. In [7] and [8], Bendersky and the author have made some progress in
adapting Bousfield’s ideas to the prime 2.

There are many computations in this project which would be intractable to do by
hand. Specialized software LiE ([27]) is used to determine the second exterior power
operations in R(Eg). A nontrivial algorithm was required to get this information into
the form of an 8 x 8 matrix of integers, some of them 16 digits long, which can be
interpreted as giving 1% on a canonical basis of PK'(Fjg), the primitive elements.
This portion of the work will be described in Section 2.

The eigenvalues of this matrix are 2¢ for e € R = {1,7,11,13,17,19, 23,29}, corre-
sponding to the fact that rationally Fy is equivalent to [, S**'. Using Maple, we

find the associated eigenvectors. The determinant of the matrix of these eigenvectors
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is

D = 2°13%5197911*13%17°19%23%29.
This implies that localized at a prime p greater than 29, these eigenvectors span
PK'(Es) ), which then is isomorphic to PK'([[5 5% as a module over all
Adams operations ¥, and hence by Bousfield’s theorem has

ot (Bssp) = op (] ] 5% ).

R
If, for example, p = 29, we can find two of the eight eigenvectors, v and w, for which

v' = (v —w)/29 is integral. The set of vectors obtained from the eight eigenvectors
by replacing v by v" has its determinant equal to D /29, which is a unit in Z ), and
so this set spans PK'(Eg)(29). The eigenvectors v and w correspond to eigenvalues
21 and 2%. Then ¢*(v) = kv and ¢*(w) = k*w for all integers k, and so we can
determine 1*(v'), and from this use Bousfield’s theorem to find v; 'x,(Eg; 29), which

agrees with that deduced in [10] from the decomposition
Eg ~29 B(3,59) x S' x 5% x 577 x 5% % §% % §47.

The point is that the value of the determinant D, computed blindly from repre-
sentation theory, is intimately related to the decomposition of Eg when localized at
each prime. Note also that the matrix analysis shows that the portion of K'(Fg; Q)
which must be modified to pass to K*(Es; Z)) is the portion related to S* and S,
consistent with the homotopy analysis.

Because of the 5% factor in D, we must 10 times replace vectors by % times a
difference of vectors in order to find a set of vectors whose determinant is a unit in
Z). On this set, an explicit formula for the Adams operations Y* can be given.
This portion of the work will be described in Section 3. We also show there how
performing these basis changes for all relevant primes enables a determination of the
Adams operations * in K*(X) (not localized at a prime) for all exceptional Lie
groups X and all £.

The Adams operation formulas are of the sort that allow us to draw inferences about
attaching maps in the localized Lie groups. This new homotopy-theoretic information
has been derived here just from our representation-based calculations together with

Adams’ e-invariant work ([3]). This will be discussed in Sections 5 and 6.
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We feed this information into Bousfield’s theorem, which, after a good deal of
manipulation, yields the results for v; 'm,(Es;5). The computations for vy 7o, (Es)
are given in Section 4, and those for vy 17r2m,1(E8) are given in Section 5, which also
includes some useful general results, such as periodicity of the number of summands,
and the use of exact sequences. In Section 6, we perform a similar analysis to obtain
the result in Theorem 1.2 for vy 7, (Fg; 3).

Bendersky and Thompson ([11]) have recently constructed an unstable Bousfield-
Kan spectral sequence based on K,K, where K represents periodic K-theory. It
possesses some advantages over the BP-based UNSS used in papers such as [10] and
[16], especially in that K,(FEg)(,) is a free commutative algebra, whereas BP,([s) is
not. Using the result obtained in our Proposition 3.5 about the Adams operations in
K*(Eg)(5), which effectively implies that there is an g attaching map between cells
which would have been in separate factors if Harper’s asserted splitting had been cor-
rect, together with their K, K-based spectral sequence, Bendersky and Thompson are
able to compute v; ', (Eg; 5) in a manner which is arguably more insightful than the
computation here. Their method requires information about the homotopy theory of
Es (e.g. Steenrod operations), while ours requires information about the representa-
tion theory. But so far homotopy theory has been unable to provide the complete
picture (i.e., the ag attaching map), for which it had to rely on the representation-
theoretic approach presented here. Moreover, our result for v; 'm,(Es;3) still seems
totally inaccessible to UNSS-type methods.

The author would like to thank Martin Bendersky, Pete Bousfield, and Mamoru

Mimura for helpful comments on this project.

2. REPRESENTATION THEORY AND %2 IN K-THEORY

In this section, we use representation theory to determine the Adams operation
¥? in K*(FEg), and present an algorithm by which this can be done for any compact
simple Lie group.

Let G be a simply-connected compact Lie group. Bousfield’s approach to v; ', (G; p)
([12]) requires as input certain Adams operations on the primitives PK'(G; Zp).
Bousfield suggested to the author the relationship with exterior powers in the repre-

sentation ring R(G) described in the next two paragraphs.
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Let I denote the augmentation ideal in R(G). Hodgkin’s theorem ([21]) implies

that there is an isomorphism
I/)I? - PK™YQ), (2.1)

which may be viewed either as induced from the composition R(G) — K°(BG, *) —
K@) or from Hodgkin’s function 3 that views a representation p : G — U(n) as
a homotopy class in [G,U] = K~!(G). Although Hodgkin doesn’t write the isomor-
phism (2.1), he describes R(G) in such a way that I/I? is clearly the free abelian
group on the reduced basic representations pi, ... ,p;, and shows that PK~1(G) is
the free abelian group on 3(p1), ..., B(p). The simple description of 5 makes it clear
that (2.1) respects the exterior power operations \".

Adams operations are related to exterior powers by the Newton formula
U™ (a) = M@y " a) + -+ (=1)"TIAN T a) (a) + (=1)"nA"(a) = 0,
which implies that " = (—1)"*'n\" in I/I?. By [1, 5.3, ¥™ in K'(G) corresponds
to ¥"/n in K~*(G). Thus ¥™ in PK'(G) corresponds to (—1)"™'\" in I /1?2

Now let G be a compact simple Lie group of rank [ (e.g., Eg of rank 8). The
representation theory of G is equivalent to that of the associated Lie algebra §.
Associated to G is a set A of weights, a subset A™ of dominant weights, and a subset
{M\,..., N} C AT such that A (resp. A1) is the free abelian group (resp. free abelian
monoid) generated by Ai,..., \. (e.g., [22, p.67].) The set A is given a partial order
by > mA < >omiA; if and only if m; < mj for 1 <i <|I.

To each irreducible representation of G is associated a finite set of weights with
multiplicities. It is a theorem that one of these weights is larger than all the others,
and it occurs with multiplicity 1. (e.g., [22, §21.1].) This highest weight is domi-
nant. The “highest weight” defines a function from the set of isomorphism classes of
irreducible representations of G to AT, and this function is bijective. It is a theorem
(See, e.g., [21, 3.3]) that R(G) is a polynomial algebra generated by the irreducible
representations pi, ..., p; which have Aj, ..., \; as highest weights.

If m = (my,...,my) is an [-tuple of nonnegative integers, let V(m) denote the
unique irreducible representation with highest weight miA; + -+ + my\;. We will

need three types of information about representations.

e The dimension of V(m) (as a complex vector space).
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e The second exterior power A?(V(m)), expressed as Y ¢;V(k;)
for nonnegative integers c; and [-tuples k; of nonnegative inte-
gers.

e The tensor product V(m) ® V(n), expressed as »_ c;V (k).

There are algorithms for each of these, implemented conveniently in the software
LiE ([27]). For dim(V(m)), Weyl’s formula ([22, p.139]) is used. For \*(V(m)), a
formula of [4] for symmetrized products is used. For V(m) ® V' (n), Klimyk’s formula
([23]) is used.

Let p; = p; — dim(p;). We need A\?(p;) as a linear combination of py, ..., p; in I /1%
The software gives us A?(p;) as Y ¢;V (k;), and hence

N(pi) = N(pi) + A (pi) A (= dim(p;)) + A*(— dim(p;))
= > ¢V(k;) —dim(pi)pi + (TT5). (2.2)

We can iterate tensor product computations to write monomials pi* - - p;* as linear
combinations of V' (k)’s, and then apply an easy row reduction to this result to write
V(k)’s as polynomials in the p;’s, or, after manipulating polynomials, in the p;’s.
In /1% we ignore products of p;’s. Substituting the formulas for V(k;) as linear
combinations of p;’s into (2.2) yields the desired expression of \*(p;) as a linear
combination of p;’s in I /I

We illustrate how this works in the simple example of the exceptional Lie group
(G5, and then show how the computations can be expedited. The software tells us
A(p1) = p2 + p1 and N*(pa) = V(3,0) + pa. (Remember, ps = V(0,1).) Also,
dim(p;) = 7 and dim(p,) = 14. Thus

N (p1) = prtp2—Tpi+ () = =6(p1+7) + (P2 +14) + 52 = —671 + pa.

To find A\?(ps), we need to express V(3,0) as a polynomial in p; and p,. The software

tells us
pp@pr = V(2,00 +p1+p2+1
pL®pe = V(1,1)+V(2,0)+ p
pr®@V(2,0) = V(3,00+V(1,1)+V(2,0) + pa + p1.
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This allows us to compute the second equation in

N (p2) =V (3,0) + pa = p} — 2p1p2 — o1 — p1,
from which we derive
N(p2) = (o1 —2p1p2 = pi — p1) — pa + (3,7)
— 4 207 + 1045, — 27 — 285
= 104p; — 28p, mod I (2.3)
By our earlier remarks, this implies that PK'(G3) has basis {z1, 22} with ¥?(z1) =
6x1 — x5 and ¥?(x9) = —104x; + 2815.

This procedure can be expedited by just looking at linear terms. If f is an element
of R(G), let L(f) denote the first-order terms when f is written as a polynomial in
P, .-, p- We have

L(X*(p2)) = L(V(3,0) + p2) — 1475, (2.4)
and from the tensor product equations above, a type of differentiation yields
L(V(2,0)) + p1 + po
dim(p2)p1 +dim(p1)p2 = L(V(1,1)) + L(V(2,0)) + p1
dim(V(2,0))71 + dim(py) L(V(2,0) = L(V(3,0)) + L(V(1,1))
+L(V(2,0)) 4 p2 + p1.
The first equation says L(V(2,0)) = 13p; — pa, then the second says L(V(1,1)) = 8po,
and then, using dim(V'(2,0)) = 27, the third equation says L(V'(3,0)) = 104p; — 15p,,
which when substituted into (2.4) yields (2.3).
The LiE program that implements this expedited algorithm for Ejg is listed and

2dim(p1)p1 =

described in Section 7. The one subtlety is how to know which tensor products to
compute. The dominant weights are ordered by height!, which is the sum of the
coefficients when they are written as roots. For example, in G, the weights p; and
po correspond to roots 3a; + 2ap and 2ai; + i, respectively, and so the height of
V' (my, ma) is bmy+3msy. An elementary result states that V(m)®@V(n) = V(m+n)+

Lyometimes called “level”
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terms of height less than that of V' (m +n). For every term V(1) with Y [; > 1 which
occurs in A\?(p;), we choose a way of writing 1 = m + n, and differentiate the equation
V(m) ® V(n) = V(1) 4 terms of lower height

to inductively obtain formulas for L(V'(1)). It can happen that V(m) ® V' (n) might
contain terms V (k) which did not appear in A*(p;). If so, we also find L(V (k)) by
the same method, i.e., differentiating a formula for V(a) ® V(b) where a+ b = k.

When this algorithm is performed for Eg, we obtain the matrix (2.5) for A% on the
basis {p1, ... ,ps} of I/I%. Thus, for example,

L(X*p,) = —36280, — po + p3 + 38757s.

—3628 1829621 12625838007 —1270362010619556

-1 —116621  —146298269 18170270443687
1 —496 —5835130 582917207249
0 1 3875 —468700376
0 0 —177629 26815340999
0 —247 12587859 —2027479372896
0 150877 —392633383 78837408033778
3875  —4549375 10807381790 —2860474034106800
2706011993074  —401581533 0 0
—40039592220 6661497 0 0
—1242615998 185628 0 0
1073250 —249 0 0 (2.5)
—68699627 27001 -1 0 '
5393300762 —2538745 248 0
—233942373952 156457497 —30876 1

9317251205935 —7999393170 2573495 —247

We obtain the following important corollary of this computation, where 3 is the

isomorphism of (2.1).

Corollary 2.6. With respect to the basis {3(p1), ... ,B(ps)} of PK(FEyg), the matriz
of —? is given by (2.5).

3. NICE FORM FOR 9" IN PK'(Eg);5) AND PK'(X)

If p= 3 or 5, then 2 generates (Z/p?)*, and so Bousfield’s theorem requires knowl-
edge of 1% and 9?. A computation of 1? similar to that of the previous section could
be made (provided enough computer time and space is available), and the results

(Corollary 2.6 and its analogue) plugged into Bousfield’s theorem to give results for
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vy ', (Es;5). However, the matrix (2.5) is so unwieldy that it would be very difficult
to obtain a nice form for the resulting groups. For this reason, we find a new basis of
PK'(Es) 5 on which the action of ¢* has a nicer form. That is the purpose of this
section. Moreover, as we shall see, the new basis will be one on which every ¥* can
be determined at the same time as 12. We will also perform similar computations for
Adams operations in K (X) (unlocalized) for all exceptional Lie groups X.

To this end, we use Maple to find the eigenvalues and eigenvectors of a matrix M,
which is defined to be the negative of the matrix (2.5). This is the matrix of ¢ on
PK'(Eg). We are not surprised to find that the eigenvalues of M are 2!, 27, 211 213,
217 219 923 "and 2% because of the rational equivalence

Eg ~q 5% x S x 5% x ST x §%% x §% x 7 x §
(3.1)
and the fact that 1* acts as multiplication by k" on K!(S?"*1).
A matrix whose columns are eigenvectors of M corresponding to the eigenvalues

listed above in increasing order is

418105625 451155607289497 —3133156733386433  —2595116726135
4168750 3797965233710 16166554278770 49280463350
23125 20720212181 97338188051 212788925
1 873857 5050967 7697
377 326320702 2019676642 2670694
119249 99339310201 777470688031 532675273
27753998 16454843873197 398907853660267 —470842549139

9022308750 —26386060414578330 —79539474507550230 68079530157990
—7044348025 —114112039 17026841 2691065

—3895749830 —1864130 —136850 —38570
21836035 56893 —T7787 —-1235
1471 1 1 1
635402 206 446 —58 (3.2)
294773639 —86407 —48007 4409
—42760408957 12566861 3586541 —174307

3836612952570 —810585690 —191313690 6425670

The numbers in the columns are coefficients with respect to the basis of Corollary
2.6.

The determinant of this matrix is a 68-digit integer which factors as

2013325107911413%17°19%23%29 (3.3)
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This determinant gives a lot of information. First, it says that localized at a prime
greater than 29, the eigenvectors form a basis, consistent with the known result that

Ejs localized at such primes is equivalent to a product of spheres. Let

{v1,v7, v11, V13, V17, V19, V23, V29 }
denote the columns of (3.2). It is very important to note that since these vectors

satisfy 1?(v;) = 2';, they correspond to the sphere factors in (3.1), and hence also
satisfy

VF () = ki, (3.4)
for any positive integer k.

For primes p satisfying 11 < p < 29, it was shown in [26] that Fg is p-equivalent to
a certain product of spheres and sphere bundles over spheres with a; attaching maps.
For such primes, the number of sphere bundles equals the exponent of p in (3.3). We
use p = 23 to illustrate how combinations of the eigenvectors in (3.2) correspond to
these product decompositions, providing somewhat more detail than we did in our
brief sketch for p = 29 in Section 1.

We note that v} = (v; — v93)/23 and v, := (v; — 18vy)/23 are integral. If v,
and v, are replaced by v] and v} in (3.2), then the determinant is divided by 232,
and so the new set of vectors is a basis for PK'(Es)2s). It follows from (3.4) that
YF(0]) = k) + 55 (k— k*)vag and ¢F(vh) = k™0l + 33 (k" — k**)vag. This agrees with the
determination of 1* in sphere bundles B(3,47) and B(15,59) with attaching maps a,

given in [3]. Thus as Adams modules
PK'(Eg) 3 ~ PK'(B(3,47) x B(15,59) x 5% x S*" x $% x 5% 53).

By Bousfield’s theorem, these two spaces will have isomorphic vi-periodic homotopy
groups. Of course, we already knew that by the product decomposition of [26],
but here we are getting it without relying on the [26] result. In [10], v;-periodic
homotopy groups of a; sphere bundles over spheres were determined by the UNSS,
and v] 'm.(Es;p) deduced for p > 11 using the product decomposition of [26]. In
Proposition 5.5, we will determine the v;-periodic homotopy groups of these sphere
bundles by Bousfield’s theorem, giving us a self-contained computation. This can be

done for (Eg, p) for any prime p > 11.
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When p = 5, we use Maple to help us find 10 combinations of vectors that are
divisible by 5. These are

A
/l)l —

U1 + 2U13)/5
V13 + 3v17)/5

/
U1z =

/

U17 = Vi — ’1)29)/5

1 Vi3 + )y — U29)/5

Vg =

/
v =

!/
Vg =
vl o=

"

7/7 'U11+2U19)/5
Uir = /1

n
7 =

(
(
(
(
v; = (vr—vn)/5
(
(
(
(
(v7

1)19 — 21)23)/5

The way that these turn out to be grouped, with 1, 13, 17, and 29 related in one
group, and 7, 11, 19, and 23 related in the other group, is consistent with Wilkerson’s
product decomposition ([31]) of Egs as a product of two spaces whose rational types
correspond to these two groupings. The matrix (v}, vy, v}7, vag, V5, v}, Vg, V23) has
determinant a unit in Z), and so its columns form a basis for PKl(Eg)(g,). We
rename the classes (1, T13, T17, T29, T7, T11, T19, T23) and compute ¥ (x;) using (3.4).

We obtain the following result.
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Proposition 3.5. PK'(Eg) @) has basis {1, 213, T17, T29, T7, T11, T19, T2z} Salisfying
V(1) = k'ay +10k(k" — 1)z13 — 8k(K"™ — 1)a17 4+ 2k(K'2 — 1)299
= kx5 4+ 2B (kY — Dagr + ZE13(1 + 26" — 3k0) 2o
= Ky — TR = 1)y,
= k1
= k'wr 4+ 2KT(1 — kYo + k(3 — 2k* — k'2)myg

e kT (32 4 16k — K12 — ATK'%)zgy

V() = kMa 4 RN = B zg + k(9K — KB — 8)wag
¢k($19> = /{3191319 + %klg(l — ]{74)1’23

VF(203) = kPwys

A formula ¢*(x,) = k"z, + %k:"(k‘*m — 1)@pyam + -+, with w a unit in Zg) and
m # 0 mod 5, is of the type that would be obtained if the space had cells of dimension
2n + 1 and 2n + 1 4+ 8m with attaching map «,,. The contributions of these cells to
v; . (X) will be as if they had the oy, attaching map. The formula for 1*(z,7) is, at
the very least, strongly suggestive that in Eg the 35- and 59-cells are connected by
a3. This would contradict the product decomposition asserted in [20, 4.4.1b], which
said that one Wilkerson factor could be further decomposed as X (3,59) x X (27, 35).
One could make the argument more precise either by noting that it is impossible
that a space whose Adams operations can be written as in Proposition 3.5 can be
decomposed in this way (i.e., no change of basis can split the Adams operations), or
by noting that v, 'm.(Fg;5), as computed in the next section, is incompatible with

such a decomposition. Thus we obtain the following result.

Proposition 3.6. In Wilkerson’s decomposition ([31, 2.3]) of (Eg)(5) as Xox Xs, both
factors are indecomposable. In particular, the product decomposition of Xy asserted
in [20, 4.4.1b] is not valid.

By performing, for all relevant primes, changes of basis of the sort illustrated above
for Fs when p = 5 or 23, we obtain, for each exceptional Lie group X, bases for
PK'(X) on which we can compute ¥*. We obtain the following results. In all of
them, let B; = ((p;), where 8 and p; are as in Section 2.
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Proposition 3.7. A basis for PK'(Gy) is given by {y1,ys} with y1 = By and y5 =
—4B1 + By. For all integers k,

V() = ky1—|—%(l§—k5)y5
@/)k(ys) = k5y5

The nice feature of this result and the subsequent ones for the other exceptional Lie
groups is that they are a result about integral K-theory (i.e., not localized at a prime)
and the Adams operations have a nice form (triangular, among other features). Since
PK'(X) generates K*(X) for compact simple Lie groups X, multiplicativity of the
Adams operations allows us to deduce the Adams operations on all of K*(X). Note
that the classes y are subscripted by the exponent e such that ¥*(y) = k°y+ other
terms.

The method of proof in each case is to

e use LiE to obtain the matrix of ¢? on {By, ... , B;} similarly to
(2.5),

e use Maple to find eigenvectors of this matrix similarly to (3.2),
and note that these vectors satisfy ¢*(v;) = kiv; for all k,

e use Maple to repeatedly replace vectors v by (v — w)/p, where
p is a prime which divides the determinant of the matrix of
vectors and w is a linear combination of vectors which appear
after v in the most recent set of vectors, until the determinant
is £1, and

e use Maple and (3.4) to compute ¥* on the final set of vectors,

since they are explicit combinations of the eigenvectors.

In [28] and [29], Watanabe computed the Chern character on a certain set of gen-
erators of K(Gy), K(Fy), and K(FEg), and in [30] he explained the well-known way in
which this would allow one to determine the Adams operations. Using LiE, his set
of generators can be expressed as linear combinations of ours, and the results for

which could be read off from his results for ch can be related to ours. We checked
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this for G5 and F; and found the results to be in agreement. However, it should be
pointed out that his generators do not have the nice feature of having a triangular
matrix for ¢¥*. Also, in June 1998, Watanabe told the author that he felt that his
methods would not work for E; and Eg. An internal check on our results, which was
performed for each exceptional Lie group, is to transform the 1* formulas to the basis
of B;’s, and then set k£ = 2 and compare with the formulas given by LiE.

Now we state the results for the other exceptional Lie groups.

Proposition 3.8. A basis for PK'(F}) is given by {y1,ys, y7,y11} with y; = — B,
ys = Bi = 3By, yr = —2B1 + By — 15B,, and yi = —6B, + By — 11B; + 102B,. For
all integers k,

) = k= (k= Ky + (= 5k ik kD

1 1 1 1
=gk + m’fE’ + 13440]{;7 o 147840k11)y11

Vi(ys) = Koys+ S — K)yr + (555 — g0k — ok yn

Vlyr) = Ky + 07— kyn

V) = Ky

Proposition 3.9. A basis for PK'(Eg) is given by {y1, Y, Ys, Y7, Ys, Y11+ with
h = 2B, — By + 3B6

ys = —DBi+ Bg
Ys = _2Bl + BQ — 236
Yyr = —Bl — 332 + B5 — 1236

Ys = 1].B1 — Bg + B5 — 1].B6
Y11 = 42B1 — 2132 — 6B3 + B4 — 6B5 + 42B6
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For all integers k,

@Z)k(yl

)

kyr — 2(k — kYys 4+ 2k — K)ys + (Sk — 2585 + B kT)y,
+(_ﬁk + @]{‘A 21410]{55 336k7 o m’fg)

(Mk o 6720k5 + Bax0
k'ys + m(k4 k®)ys
Koys + 15 (k% = KT)yr — 53(K° = KT)ys + (5:24° — gk — gk ym
k'yr — %(k?? — k®)ys + %(W — k"yn
Kys

7 11
13440 ik T 147840 )y

knyn-

Proposition 3.10. A basis for PK'(E7) is given by {y1,Ys, Y7, Yo, Y11, Y13, Y17} with

Ys
Y
Yo
Y11
Y13
Y17

18738, — 358, + 15B; — 2B5 + 287 B — 23056 B;
—113B; — By + 2B; — Bs + 29B; — 547B;

6B; — 6B, + TBs — 216B;

2B, — By + Bs — 30B;

—184B; — By + 3B; — By + 21 B — 2928,

120B, — 5By — 2B; + Bs — 22B¢ + 328B;

16728, — 25285 — 34B5 + By — 12Bs + 177Bg — 1344B.
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For all integers k,
Vi) = ky— Z(k — B)ys + (BT — SRR+ PR yr + (B0k — YRR
_3665390k7 + %k‘g)yg (- 2409p 4 140085 4 365057 | 8008111y,

2310 210 1680 18480

45223173 85358629 1.5 464693 1.7 4357 1.9 507403 7.11 _ 24684827 1.13
+( 10010 k+ 18900 k? 181440k + 5400k +221760k 5896800k )y13

1 2154361 1.5 3659 1.7 4357 1.9 39031 11
+(1021020k + 154791000k + 684288k + 1296000k + 11176704k

24684827 7.13 8118218221 7.17
707616000k + 926269344000k )yl7

Vys) = Koys — B(K® — kT)yr + (— 2L K5 — 22ET + 95010y 4 (k5 + 2 kT

57 111 60581 7.5 2921 1.7 961 7.9 247 111 _ 106799 7.13
2240k )3/11 + <60480k + 103680k + 34560k 8960k 103680k )y13

1529 5 161 7 961 9__ 19 11 _ 106799 1.13
+(495331200k + 2737152k + 8294400k 451584k 12441600k

1473021997 117
+ Trassessaao0 K Y17

Vilyr) = Klyr = BT = K)yo + g5 (K7 — KMy + (355K + 557 — 256k

13 7.13 7 7 1 79 1 211 13 713 17 717
432]f )y13+(114048k +8640k 24192k 51840k +147840k )y”

Vye) = Klyo+ ﬁ)(kg — k) + (572‘.00k9 - 2851500k13 + 57éook17)yl7

¢k(y11) — klly11 + %(k,ll o le)yIB + (30%]611 _ %kw + 33310’“17)917
V() = kPyis+ ﬁ(k’m — k')
Viyr) = KTy

Before stating the final of these results about Adams operations in the K-theory of
exceptional Lie groups, the case in which many of the numbers become ridiculously
large, we point out two features. One is that the coefficient of each y; in ¥¥(y;) is
actually an integer, yielding integrality results. The other is that at least the second
terms give information about attaching maps via primes occurring in denominators.
This follows from [3], where it was shown that in a sphere bundle over a sphere with
attaching map a; with ¢ £ 0 mod p the Adams operations will be as described in
our Proposition 5.5. Thus, for example, the 5s in the denominators of the second
terms in the formulas for ¥*(y;), ¥*(ys), and ¥*(y13) in Proposition 3.10 are, at the
very least, strongly suggestive that there are a; attaching maps from 1 to 5, 9 to 13,
and 13 to 17 in F;, and a similar deduction can be made at the prime 3. The same
conclusion can be made from somewhat simpler formulas of K(—),), but here we are

getting information about all primes at once.
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Proposition 3.11. A basis for PK'(Eg) is given by {y1, y7, Y11, Y13, Y17, Y19, Y23, Y29 |
with
v = —184157B; — 307138y — 218 B3 4+ 1385 — 9198 + 95038087 — 153687494 By
yr = 2247458, — 22218y — 101 B3 + 9B5 — 95084 4 69688 B; — 3701825 By
y11 = 100088B; — 9828y — 45B3 + 4B5 — 422 B¢ + 30898 B; — 163612055
y13 = 1000918, — 9828y — 45B3 + 4B5 — 422 B¢ + 30897 B; — 1635950 85
Y17 = 7168281 — 7888y — 3285 + 3B5 — 318 B¢ + 2344187 — 124453085
Y19 = 26482B; —223By — 1283 + B — 10584 + 7632B7; — 403600 Bg
Yo3 = 28444B; — 1958, — 1385 + Bs — 104 B¢ + 7462 B; — 39234055
Yoo = 269106581 — 385708, — 123583 + B4 — 58 By + 4409 B¢
—174307B7 + 6425670 Bs.
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For all integers k,

@/)k(yl)

W*(yr)

* (y11)

¢k (3113)

¢k(yl7)

@ka (y19)
* (yas)
¢k (3129)

1454165 (7. 1.7 182723259 7. 6505934217.7 | 395881345 7.11
ki (k=K Dyr + (Fk 536k + sk )yn
185634674 50198648299 7,7 9105270935 7,11 _ 9172441277 7.13
+( 143 k+ 24192 k 12672 k 157248 k )yli”
1116883611 7. 332043745267 7.7 _ 4354694795 7.11 | 541174035343 7,13
+( 6188 k 1596672 k 145152 k™ + 9434380 k
14942613523 7.17 10741728047 7. 113260168654603 7.7 _ 326918814701 7,11
+ 135717120 k )yl7+< 149226 k 1634592960 k 38320128 k
1201589807287 7.13 _ 1240236922409 7.17 | 2656402375049 7,19
+ 52891520 k 1628605440 K+ 90348410880 k )yl9
+ (293377022893 J _ 2311774903640460613 ;.7 _ 6031690056666301 .11
2028117 13338278553600 228248616960
4 34318514761511237 .13 | 354124997881577 .17 __ 634880167636711 /.19
627683696640 820817141760 21683618611200

31696200305279479 1.23 1 254146452881 7
+ 2454243253862400 k >y23 + (38818159380k + 7362729761587200k

+ 399916721902123 k,ll ___70600280509069 k13—|— 21980584492333 k}17
72128388948295680 10243797929164800 537799391281152