

Microcrystallization and <u>Active</u> Applications of some Novel Glasses Guorong Chen Institute of Inorganic Materials East China University of Science and Technology (ECUST)

Passive and Active Applications

Passive applications Without changing the optical properties, other than that due to scattering, absorption and end face reflection losses, etc.

Active applications:

The initial light propagating being modified by a process. Examples include fiber lasers, amplifiers, all-optical devices, etc.

Passive and Active Applications

	-	-	

3500	employees	14 Schools
1000	professors	Pharmacy
15000	undergraduates	Biotechnology
4000	graduates	Chemical Engineering
	•	Chemistry and Pharmaceuties
		Materials Science and Engineering
		Resources and Environmental
52	B.Sc.	Engineering
72	M.Sc.	Information Science and Engineering
12	Eng. M.	Mechanical and Power Engineering
26	Ph. D.	Science (Maths and Physics)
5	Postdoc.	
	1	Culture and Arts
		Foreign Languages
		Philosophy and Politics
		Business and Economics
		Public & Social Administration

Researches

Novel Functional Glasses

- Oxide Glasses
 - Rare earth doped
 - ZnO-activated
- Chalcogenide Glasses
 - Micro-crystallization

18.00

15.00

12.00

9.00

6.00

3.00

0.00

(%)

ř

- IR luminescence
- Non-linearity
- Irradiation induced effects

Oxide Glasses

Rare earth doping for scintillation and white LED

ZnO activating for fast scintillation

Internationally Collaborated with

ENEA-Casaccia Center, Rome, Italy

Background

A good alternative candidate as higher energy irradiation detector for dosimetry system due to:

A low barrier of information bleaching temperature (<350 °C)

 The higher energy irradiation detection (> 5MGy)

back

Transmitting and emission spectra of Ce³⁺ doped oxide glasses with different optical basicity - the electron donor power of the oxides

Mater. Res. Bull. (2006), doi:10.1016/j

- Fast decay time of 20–50 ns suitable for scintillation
- Advantages of glasses: good matrix for rare earths, lower cost, stable properties etc.
- Disadvantages: Non-shielded 5d orbit sensitive to matrix; lower quantum efficiency

J. Am. Ceram. Soc., 87(7) (2004) 1378-1380 *J. Non-Cryst. Solids*, 326-327(2003)343-347;

Enhanced emissions due to energy

transfer from Gd³⁺ or partitioning role of La³⁺

Enhanced emissions due to energy

transfer from Gd³⁺ or partitioning role of La³⁺

Luminescent Glasses for <u>White LED Lighting</u>

Emission spectra of Dy³⁺ doped (left above) , Tb³⁺/Eu co-doped (left below) and Ce³⁺/ Tb³⁺/Eu co-doped glasses excited at UV wavelength

J. Lum. doi:10.1016/j

Luminescent Glasses for <u>White LED Lighting</u>

J. Lum. doi:10.1016/j

White-Light-Emitting diodes (W-LEDs)

An important class of lighting devices for replacement of conventional lighting sources of incandescent and fluorescent lamps

Advantage: long lifetime, lower energy consumption, and environmentalfriendly characteristics

Glasses: lower production cost, simpler manufacture procedure, free of halo effect, etc, feasible to replace phosphors for W-LED

Color coordinate diagram of luminescence glasses

J. Lum. doi:10.1016/j

Submit to J. Am. Ceram. Soc.

Submit to J. Am. Ceram. Soc.

ZnO-Activated Oxide Glasses for Scintillation

200

300

400

Absorption spectra

of glasses with different compositions (left), different ZnO/BaO ratios (middle) and different thermal treating conditions.

> Opt. Mater., 29(2007)552-555 J. Am. Ceram. Soc. (accpeted)

500

Wavelength (nm)

600

700

800

ZnO-Activated Oxide Glasses for Scintillation

Opt. Mater., 29(2007)552-555 J. Am. Ceram. Soc. (accpeted)

Luminescence ZnO

Applications in optoelectronic devices: vacuum fluorescent and field emission displays, blue and ultraviolet emitters and detectors.

Near band-gap excitonic emission from ZnO at around 380 nm with the subnanosecond lifetime.

It appears of interest for developing novel superfast scintillating materials with ZnO as activator.

Photoluminescence

Emission spectra (below) and Raman spectra (right) of glasses with and without F⁻ ions

Si-O-Zn --> Si-O-Si

J. Phys. Chem. Solids, under review

Chalcogenide Glasses (ChG)

Novel systems for crystallization

IR luminescence

Second Harmonic Generation (SHG)

 γ -irradiation induced effects

Internationally Collaborated with

UNIVERSITE DE RENNES I

Typical Chemical Elements used in chalcogenide glass

С	N	0	F
Si	Ρ	S	СІ
Ge	As	Se	Br
Sn	Sb	Те	
Pb	Bi	Ро	At

Se-Ge-As chalcogenide glass systems

4.8

Transmission /%

670

Optical transmission spectra of chalcogenide glasses

Sample Preparation

Novel Chalcogenide Glass Systems

Novel glass forming regions: GeSe₂-As₂Se₃-CdSe (below), GeS₂-Sb₂S₃-PbS (right above) GeSe₂-As₂Se₃-PbSe

J. Am. Ceram. Soc., 88 (2005) 3143-3146 J. Am. Ceram. Soc. 89 (2006) 2154-2158 J. Am. Ceram. Soc. (2007) (accepted)

Crystallization Process

Properties of some glasses in the (1-x) (0.85GeS₂+0.15Sb₂S₃)-xPbS Group

Sample code	ρ (kg/m ³)	Molar Volume (cm ³ /mol)	H _v (kg/mm ²)	K _c (MPa. m ^{1/2})	T (℃)	T (℃)	ΔT (°C)
P1	3.1299	53.42	185.2	0.2379	336	537	201
P2	3.6110	48.30	184.2	0.2090	312	505	193
P3	3.8481	47.19	166.6	0.1937	293	467	174
P4	4.2197	44.75	169.6	0.1920	293	458	165
P5	4.4352	44.20	169.6	0.1913	295	437	142

DSC curves of GeSe₂-As₂Se₃-CdSe chalcogenide glasses

J. Am. Ceram. Soc. 89 (2006) 2154-2158 J. Cryst. Growth, 285(1-2) (2005) 228-235

IR transmitting spectra of P5 (51GeS₂-9Sb₂S₃-40PbS) glass

XRD patterns of (a) P5 ; (b) P5 after annealing at 340°C for 15h; (c) P7 at 300 °C for 5h; (d) P5 at 310 °C for 85h; (e) P6 at 330 °C for 12h

J. Am. Ceram. Soc. 89 (2006) 2154-2158

J. Am. Ceram. Soc. 89 (2006) 2154-2158

SEM Observations: (a) P9 at 330°C for 163h, (b) P7 at 300°C for 5h, (c) P5 at 340°C for 15h, (d) P5 at 310°C for 15h, (e) P5 at 310°C for 32h (f) P5 at 310°C for 85h

Transmission spectra and XRD patterns of sample 40GeSe₂-50As₂Se₃-10PbSe after different thermal treatments

Submit to J. Am. Ceram. Soc.

SEM observations of sample annealed: (left) 230°C , 20h ; (right above) 250°C , 10h ; (right below) 270°C , 10h ;

Submit to J. Am. Ceram. Soc.

IR Luminescence

Average Coordination Number (ACN) > 2.67 $\tau = 440-530 \ \mu s$

Transmission and emission spectra of Dy³⁺ doped Ge-Ga-Se glasses

J. Chin. Ceram. Soc., 33(2005)639-643

Background

Energy Levels of Dy³⁺

Absorption (a) and luminescence (b) spectra of Bi doped GeS₂-Ga₂S₃-KBr chalcohalide glasses at 900°C and 930 °C

Appl. Phys. Lett. (under review)

Absorption (a) and luminescence (b) spectra of Bi/Dy co-doped GeS₂-Ga₂S₃-KBr chalcohalide glasses at different temperatures

Chem. Mater. (under review)

Absorption (a) and luminescence (b) spectra of Bi/Dy co-doped GeS₂-Ga₂S₃-KBr chalcohalide glasses at different temperatures

Chem. Mater. (under review)

Second Harmonic Generation

Diagram of modified thermal poling technique (below) for SHG measurement (Maker fringe pattern) of chalcohalide glasses with the higher content of alkali ions

18.00

15.00

12.00

9.00

6.00

3.00

0.00

350

(%)

Glasses

As32Sb8S60

Ge30Ga5Se65

Ge32As8Se60

Ge30As4Se66

Ge25As10Se65

Ge20As16Se64

Ge24As12Se64

Ge16As21Se63

Ge10As28Se62

Ge8As32Se60

As40Se60

450

500

550

No.

2

3

4.1 4.2

4.3

5

6

7

8

9

400

Optical transmission changes (ΔT) (below) and maximum ΔT versus the absorbed dose for glass sample 30Ge10As60Se

J. Am. Ceram. Soc., 89(2006)3582-3584

Raman spectra for glasses (1) 30Ge5Ga65Se (3.6MGy), (2) 35Ge5As60Se (14KGy), (3) 40As60S (3.6MGy).

SEM observations of glass samples 42As58S (a, b) and 24Ge12As64Se(c, d) before and after irradiation (3.6MGy)

J. Am. Ceram. Soc., 89(2006)3582-3584

