

Aberystwyth The University of Wales

Visualising Glass

Neville Greaves Mathematical and Physical Sciences, University of Wales, Aberystwyth

Glass Learning Series: prepared for and produced by the **International Material Institute for New Functionality in Glass** An NSF sponsored program – material herein not for sale Available at www.lehigh.edu/imi

K₂Si₂O₅ 1800K 5fs per frame

history

visualisation

computer simulation

glass transition

mation

glass structure

Patrick Reyntiens - Homage to Hector Bérlioz

© Photograph provided courtesy of Patrick Reyntiens

Volcanic Glass

tear droi

pitchstone

If you want to produce zaginduru-coloured glass, you grind, separately, ten minas of immanakku-stone, fifteen minas of naga-plant ashes (and) 1 2/3 minas of "White Plant". You mix (these) together. You put (them) into a cold kiln which has four openings (literally eyes) and arrange (the mixture) between the openings. You keep a good smokeless fire burning until the "metal" (molten glass) becomes fritted. You take it out and allow it to cool off. You grind it finely again. You collect in a clean dabtu-pan. You put into a cold chamber kiln. You keep a good smokeless fire burning until it glows golden yellow. You pour it into a kiln-fired brick and this is called (zuku-glass).

Assyrian recipe 3500 BC

".....with great wonder I observe that fire is almost everywhere the active agent. Fire takes in sand and gives back, now glass, now silver ... now lead, now pigments, now medicines....."

Pliny, Natural History (68AD) p. xxxvi

the Romans invented glass blowing between 1 BC and 1 AD

 also dichroic glass

Lycurgus Cup

the Venetians learned to fashion and decorate glass – starting around the Renaissance Aberystwyth The University of Wales

Merana tazza 16th – 17th

Aberystwyth The University of Wales

History

flat glass manufacture was perfected in Britain

> opening of the Great Exhibition 1st may 1851 in the Crystal Palace by Queen Victoria

D Winfield

MARKARINA PINA

History – Glass Sculpture

Dale Chuhuly – Venturi Window at the Seattle Art Museum.

Glass Formation

Glass Formation

network Sand SiO₂ 72.5%

modifiers Soda Na₂O 13% Lime CaO 9.3%

also Al₂O₃ K₂O MgO F

batch containing crystalline ingredients and glass cullet on the way into the glory hole

Glass Formation

float glass

process

floating molten glass on liquid tin

985

Aberystwyth The University of Wales

architectural glass

SAMPLE FOUNDARY

Preparation of a YA20 glass y melting three glass pieces to ~2000°C and cooling

SAMPLE FOUNDARY

Preparation of crsytalline Al_2O_3 from melt at 2500°C

Water at 0°C

© Institute of Mathematical and Physical Sciences University of Wales, Aberystwyth →2 10⁻³ Pas

Atomic Structure and Dynamics of Glass

Greaves G N, J. Non-Cryst. Solids, <u>71</u>, 203-217 (1985)

MD Simulation Pair Distribution Functions and Alkali Channels

MD Simulation-Modelling Ionic Diffusion

Virtual Reality Techniques – isosurfaces, ion tracks

isosurfaces

static alkali channels

Channel formation and intermediate range order in sodium silicate melts and glasses Meyer A, Horbach J, Kob W, Karg F and Schober H, 2004, PRL <u>93</u>, 027801/4

network isosurface

Aberystwyth The University of Wales

Silicate chains

network isosurface

channels & chains

Alkali channels

network isosurface

channels & chains

1800K 5fs per frame

K₄

lon tracks - K2Si2O5

correlated alkali motion

10 ps

cf Boson Peak period 6 ps

linear tracks

Visualising cooperative dynamics – local frequencies

ion tracks - Na₂Si₂O₅

Prifysgol Cymru Aberystwyth The University of Wales

100 ps

modifier sites identified b ersive inspection

> Lévy flight, dynamics Habasaki J & Okada I, PRB <u>55,</u> 6309 (1997)

vacancy free structure

mobile and immobile ions localised hopping Funke K, Bruckner S, Cramer C and Wilmer D, J. Non-Cryst. Solids 307-310, 921 (2002)

forward hops assisted by motion

proceeding ion

local frequencies – sodium, oxygen, silicon

visualising cooperative ion dynamics

Na₁ reference

 Ψ_1 direction

weakest

correlation

O₃

O₁

Na₂

Na₃

Directional Correlation

0,

O₁, O₂ and O₃ are shared nonbridging oxygens (NBOs)

Na₁, Na₂ and Na₃ involved in correlated motion over 10ps

probability is that ions are moving in opposite directions

shared low frequencies - sodium, oxygen, silicon

archite

windows

frozen liquid Peter Drieser "Price of Oil"

© Photograph provided courtesy of Peter Drieser

ionic diffus

shear and flow

Aberystwyth The University of Wales

