Presented at the IMI-NFG US-Japan Winter School , Jan 14, 2008 and Reproduced by the International Materials Institute for Glass for use by the glass research community; Available at: <u>www.lehigh.edu/imi</u>

Crystal Nucleation in...

POLYMER

Polypropilene

METALLIC

$\mathbf{Zr}_{55}\mathbf{Cu}_{30}\mathbf{Ni}_{5}\mathbf{AI}_{10}$

& INORGANIC GLASSES

$Na_2O\cdot 2CaO\cdot 3SiO_2$

Edgar Dutra Zanotto & Marcio L. F. Nascimento

Vitreous Materials Laboratory Federal University of São Carlos, Brazil

www.lamav.ufscar.br

Vitreous Materials Lab., Fed. Univ. São Carlos

Objective

To discuss the validity and utility of the CNT using relevant findings on crystal nucleation in deeply undercooled liquids reported in the last 50 years...

Simulation of nucleation and growth

T. Pusztai, G. Bortel, L. Gránásy, *Europhys. Lett.* **71** (2005)

Courtesy of László Gránásy

Real nucleation and growth in PDMS

 $63^{\circ}C$, $\Delta T = 6 \min$. Surface nucleation

 $63^{\circ}C$, ΔT =4min. Internal nucleation

Outline

i) The CNT: Theory and tests in the last 50 years

a) the diffusion mechanism ?

- b) surface energy = f(T, size) ?
- c) metastable phases ?
- d) what is next?

ii) How useful is CNT to the understanding of glass-formation and to the development of GC ?

Importance and motivation

- If crystallization is averted on the cooling path any liquid can vitrify to a glass;
- The development of useful glassceramics with <u>designed</u> micro/nano structures...

Theory and tests in the last 50 years

CNT

CNT Researchers Gallery

Josiah W. Gibbs

lwan Stranski

Gustav Tammann

Yakov Frenkel

Ladislau Farkas

Rostislav Kaischew

Richard Becker

David Turnbull

Undercooling viscous liquids followed by isothermal crystallization Treatment of glasses at deep undercoolings – direct measurement of *I*

Types of nucleation

- Homogeneous: spontaneous formation from the melt; any volume element of the undercooled liquid is equally prone to nucleation;
- Heterogeneous: nuclei form preferentially on a 'foreign' surface: solid impurities, crucible walls, bubbles, seeds, etc.

CNT: Critical Nucleus Size

$$\Delta G = -\frac{4}{3}\pi r^3 \Delta G_V + 4\pi r^2 \sigma$$

$$\frac{\partial \Delta G}{\partial r} = -4\pi r^2 \Delta G_V + 8\pi r\sigma$$

$$\frac{\partial \Delta G}{\partial r} = 0$$
, so $r_{\text{critical}} = \frac{2\sigma}{\Delta G_V} = r^*$

$$\Delta G_{\text{critical}}^* = \frac{16\pi\sigma^3}{3(\Delta G_V)^2} = \Delta G^* \quad W^*$$

Work of Formation of a Spherical Nucleus, W*

CNT: Expression and main assumptions

Homogeneous nucleation of the stable phase

controlled

the SE eq.

- Driving force = that of a stress free macroscopic crystal; $\Delta G(T) = \Delta G_0(T)$
- Interfacial energy = independent of nucleus size (R) and temperature, $\sigma = \sigma_0$

$$I \approx v_0 \exp\left(-\frac{\Delta G_D}{k_B T}\right) n_V \exp\left(-\frac{W^*}{k_B T}\right) \qquad [m^{-3}.s^{-1}]$$
Transport Thermodynamic
If molecular rearrangements
controlled by viscous flow &
the SE eq. is valid $D \approx \frac{k_B T}{3\pi\lambda\eta} \qquad W^* = \frac{K\sigma_0^3}{\Delta G_V^2} \quad \sigma \neq \sigma (R,T)$
 $\Delta G(T) \neq \Delta G(R,T)$

Let us then test CNT's predicting power

Peter James

$$I = K_1 \frac{\mathbf{T}}{\eta} \exp\left(-\frac{W^*}{k_B T}\right) \qquad W^* = \frac{K\sigma_0^3}{\Delta G_V^2}$$

Using experimental I(T), $\eta(T)$ and $\Delta G_{\nu}(T)$

ln ($I.\eta/T$) vs. 1/($T.\Delta G_v^2$) should give a straight line:

Intercept = K_1

CNT test

Slope = σ_0 (unknown) $\sigma_0 \sim \alpha \Delta H_m$

P. F. James: Advances in Ceramics 4 (1982)

Parameters needed to test CNT

Viscosity (T) & I(T) ... in the same temperature range using a glass of the same batch/ melting operation!

Deltha G (T) – measured or calculated (see next slide)

David Turnbull

Homogeneous nucleation in supercooled liquid metals

Tests of CNT

1948-50: Vonnegut, Turnbull and others: *droplet* technique for liquid metals.

The maximum undercoolings and crystal growth rates were measured and then the nucleation rates were estimated.

Liquid metals (1950's)

Kenneth Kelton

Liquid metals (1950's) 15 **Straight lines:** 0. Ha 14 Log(17/7) Pre-exponential 7 o.m. 13 higher than predicted 12 11 10 1.02 1.03 1.04 1.01 1.00 $10^{6} / T (\Delta T)^{2}$

K. Kelton, Sol. State Phys. 45 (1991)

F. Gornick, J. D. Hoffman, Ind. Eng. Chem. 58 (1966)

R. S. Tiwary, J. C. Claus, M. Vonheimendhal, Mat. Sci. Eng. 55 (1982)

Homogeneous Nucleation in Stoichiometric Silicate Glasses

Very few silicate glasses spontaneously display internal homogeneous nucleation (+ surface)

Deeply Undercooled Oxide Glasses (1970-2000's)

Kalinina Fokin, & Filipovich; Neilson & Weinberg; Rowlands, Gonzalez-Oliver, Ito, Zanotto & James; Hishinuma&Uhlmann others and have CNT using tested direct measurements homogeneous of nucleation rates in wide glasses in temperature ranges.

Testing CNT for Oxide Glasses

G. F. Neilson, M. C. Weinberg, J. Non-Cryst. Solids 34 (1979)

P. F. James, E. G. Rowlands, Phys. Chem. Glasses 20 (1979)

C. J. R. Gonzalez-Oliver, P. F. James, J. Non-Cryst. Solids 38-39 (1980)

E. D. Zanotto, P. F. James, J. Non-Cryst. Solids 104 (1988)

Results for LS2 glass

S. Manrich, E. D. Zanotto, *Cerâmica* **41** (1995).

Results

Varying ΔG_V

	↓
σ=	$\alpha \Delta H_m$
0 –	$\sqrt[3]{N_A V_m^2}$

Silicate	α	Discrepancy
Glasses	Turnb ΔC_p^{exp}	in I _{max} (o. m.)
BS ₂	0.51- 0.56	13 - 32
LS ₂	0.44 - 0.48	16 - 36
NC ₂ S ₃	0.39 - 0.41	15 - 55
N ₂ CS ₃	0.43 - 0.47	25 - 55
B ₂ TS ₂	0.40 - ?	26 - ?

Reduced surface energy, α , was fit to give the best T dependence.

Summary

- With a constant σ_0 , CNT describes the temperature dependence, but <u>not</u> the magnitude of I(T).
- Possible problems: diffusion mechanism (breakdown of the SE?), size and temperature dependent surface energy, metastable phase formation, effect of elastic stresses, etc...?

