

Production(?) of chalcogenide glass optics :

motivation, current status and future development

<u>Xiang-Hua ZHANG</u>, Laurent CALVEZ Hongli MA and Jacques LUCAS

Laboratory of glasses and ceramics, UMR CNRS "Sciences chimiques de Rennes", Université de Rennes I, 35042 Rennes cedex, France

Outline

- Background and motivations
- Current technique for chalcogenide glass fabrication
- Challenges and future trends for chalcogenide glass and lens fabrication
- □ Summary

Thermal imaging was developed for defense application

with more and more commercial applications

Why infrared is interesting for driving assistance

Thermal Imaging – A growing market

Great progress achieved in uncooled infrared detectors Constant need for cheaper, more efficient materials

Thermal Imaging : how it works

Based on the detection of the radiations emitted by hot bodies

• 2nd atmospheric window (MWIR) : **3-5 μm**

• 3rd atmospheric window (LWIR) : 8-12 μm

Need for materials transparent in these windows

Cost of Infrared detectors

Typical IR Optics

Materials for thermal imaging optics

Single Crystalline Germanium

- Expensive
- Single point diamond turning

Polycrystalline Zinc Selenide (ZnSe)

- Synthesized by CVD
- Single point diamond turning

Chalcogenide glasses - Definition

Chalcogenide glasses - Properties

Large transparency in the Infrared

moldable

Low dn/dT

Bulk / Fibers

Chalcogenide glass samples

Chalcogenide glass synthesis

Industrial fabrication of chalcogenide glass Ge-As-Se

Dr. A. Ray Hilton, Sr. Amorphous Materials, Inc. Garland, Texas

Industrial fabrication of chalcogenide glass Ge-As-Se

Dr. A. Ray Hilton, Sr. Amorphous Materials, Inc. Garland, Texas

Casting of chalcogenide glass

Dr. A. Ray Hilton, Sr. Amorphous Materials, Inc.

Casting of chalcogenide glass

Different steps of Chalcogenide glass production

Maximum size : 200 mm

Homogeneity control

Fabrication of optical lenses

- Grinding/polishing : spherical surfaces
- □ Single point diamond turning
- Molding

Molding of chalcogenid glass lenses

Examples of molded chalcogenide glass optics

Challenges for chalcogenide glass molding

upper mold glass lower mold

Sumitomo patent

Toshiba patented molding machine

Amorphous Materials Inc molding machine

Challenges and future trends

for chalcogenide glass and lens fabrication

Synthesis of chalcogenide glasses

Important difference in vapor pressures for the different elements

Closed systems

Highly sensitive to contamination by oxygen

Controlled atmosphere

Set-up for chalcogenide glass synthesis in argon

Vapor pressure of As and Se

Photos of good sample

Example of glass obtained with sealed silica tube

Index reproducibility

D

3 glasses tested

Index precision :2.10⁻³

		Index at 1.55 µm		
	glasses Tech	Lower <mark>ດຣິຊເທງ</mark> ໄຍ	Upper sample	difference e used for
sy	nthesizir	1 <mark>(2.8204</mark> 11	218198 C	ontaining 4 glass
	В	2.8112	2.8120	- 8. 10 ⁻⁴
	С	2.8099	2.8104	- 5. 10-4
ference	e B-C	3. 10 ⁻⁴	1.6. 10 ⁻³	

Continuous production line

Umicore patent For IR optics

New approach for

chalcogenide glass production

Mechanosynthesis

using mechanical energy instead of thermal energy to induce chemical reaction

Mechanosynthesis 80GeSe₂-20Ga₂Se₃

Evolution of powder coloration with milling duration

Progressive reaction between the elements and lowering of particle size

Mechanosynthesis

• Synthesis of micrometric glass powder

• Thermal properties close to that of glasses prepared in sealed silica ampoule

To produce bulk glasses or optics

Melting of the powders/casting

Bulk glass/lenses fabrication by hot pressing

<u>Principle:</u> sintering of the powder at a temperature above the glass transition temperature (Tg) but below the melting temperature (Tm)

Faster temperature ramps reached with SPS

Conventional hot pressing needs stable glasses

 $80GeSe_2$ -20Ga₂Se₃ composition: ΔT <100°C

Materials obtained:

- Inhomogeneous sintering (thermal profile of the press)
- Uncontrolled crystallization
- No optical transmission

Crystallization due to prolonged stages at T>Tg

Need to reduce sintering process duration => SPS

Fast sintering of 80GeSe₂-20Ga₂Se₃ powder with SPS

Total duration: 10 min (more than 2h for HUP)

glass bulks sintered at different dwell temperatures (50 MPa, 2-min)

G. Delaizir et al

J. Am. Ceram. Soc., 95 [7] 2211–2217 (2012)

Fast sintered 80GeSe₂-20Ga₂Se₃ glass discs

Powder sintered 2 minutes at 390°C (Tg+40°C), 50MPa

visible

Densification > 99%

Thermal camera 8-12μm

Transparent bulk samples $\emptyset = 8 \text{ mm}$, 20 mm et 36 mm

Maximum diameter obtained using silica tubes = 9 mm

Fast sintered 80GeSe₂-20Ga₂Se₃ Glass-Ceramics

Sintering at 390°C for longer durations

Summary

- Chalcogenide glasses are fabricated batch by batch in sealed silica tube
 - ✓ Discontinued process
 - ✓ Expensive single use silica ampoules
 - ✓ Only for highly stable glasses
- □ Fabrication in controlled atmosphere
 - ✓ Highly homogenous glasses
 - ✓ Only for Ge-free glasses
- □ Mechano-synthesis + Spark plasma Sintering
 - Possibility of continuous process
 - ✓ Wide choice of glass composition
 - ✓ Large size glass ceramic optics

We need process revolution