

Towards the development of new optical Fibers

Younès Messaddeq

Outline

- Introduction
- Chalcogenide fibers
 - Production of Highly pure glasses
 - Microstructural fibers
 - Waveguides using Fem. Laser
 - Self-organised periodic structure.
- Fiber Laser
- Silica fibers
 - Telecommunication
 - NPK Sensors
 - Health
- Perspectives

Introduction

ITC

- Today, data exploration(unify theory, experiment and simulation);
- Increase Scientific Information Velocity;
- Huge increase in Science Productivity;

 Managing petabyte(how to organize it? To share it?...)

Introduction

Earth and Environment

- **Pan-STARRS project** will capture 2.5PB of data each year;
- The large **Hardon Collider** will generate 50 to 100PB of data, with 20PB processed on a grids 100,000CPUs;
- The **climate** change ?
- How do we quantify and monitor total forest biomass?
- Ocean science need innovative technologies to see and sense, different processes.

Introduction

Health &wellbeing

- Enhance medical care through improved diagnoses?
- New tools for neuroscience?
- New tools for chirurgy?
- Etc.....

Question:

How glass materials can contribute effectively to all these areas?

NON SILICA GLASSES : Interests silica Fluorides 100 e = 2 mmtransmission (%) High linear and 80 Sulfide selenide non linear 60 telluride refractive index 40 20 0 21 23 25 3 5 7 9 15 19 27 11 13 17 wavelength (µm) GLS 10⁻¹⁷ $3-5 \mu m$ and $8-12 \mu m$ GeGaS SF59 SF58 15 **Phonon energies** 10⁻¹⁸-1 10⁻¹¹ س 10⁻¹¹ Oxides **SF18 SF16** Fluorides tellurite Silicate (SiO₂): 1100 cm^{-1} SF11 ZrF_4 : 560 cm⁻¹ F2 **SF14** pure SiO COPL ZBLAN 10-204 Centre d'optique, photonique et lase Chalcogenides 1.6 2.0 2.4 2.8 1.2 UNIVERSITÉ n As2S3 = 350cm-1X. Feng & al, J. Ligh. Tech. 23 (2005) 2046

Applications for the infrared

Passive:

- Thermal imaging,
- Sensors for medicine, biology, environment (organic molecules with infrared chemical imprint)
- Pressure, temperature sensors

Production of H.Pure Chalcogenide glasses

COPI, March 2011 M = 5449, Ø=24 MM, I=400 MM

Production of H.Pure Chalcogenide glasses

Chalcogenide Fibers

- Minimum d'atténuation = 0.1 dB/m @ 2.55 μm
 - Impuretés : OH (> 1.5 dB/m @ 2.9 μ m) SH (~ 3 dB/m @ 4.0 μ m \Rightarrow ~ 1.3 ppm en SH)

Chalcogenides MOF : Material Dispersion

Chalcogenides MOF : fibers

Preforms & corresponding fibers

Diameter : 16 mm

Core clad preform

. Core

Clad

Diameter 100-160 µm

Chalcogenides MOF : Material Dispersion

Suspended core MOF

Chalcogenides MOF : The Challenge / Using fibred pulsed source beyond 2 μm

Joint Research with (Prof.F.Smektala, Dijon, France)

Supercontinuum in $3-5\mu m$ window Pumping MOF close to their anomalous dispersion regime

Nanopaticles Au ou Ag Joint Research with D.Boudreau (COPL).

Multifunctionnal fibers

Production Mid-IR Waveguides GeS Based Glasses

Join Research with Prof. R. Vallée (COPL)

- Wavelength : 800 nm
- Ep : 0.2µJ→ 2.0 µ J
- Frequency : 100 kHz
- Translation speed : 0.05mm/s, 0.5mm/s, 5mm/s, 50 mm/s

Production Mid-IR Waveguides GeS based Glasses

S.H.Messaddeq, Opt express, 20(2)2826, 2012

Interaction with Laser Femto Ge₂₅Ga₁As₉S₆₅

Squared diameter of the ablated craters as a function of the incident pulse energy

Interaction with Femto laser

SEM image of an ablated region

UNIVERSITÉ

The nanostructures could be formed with fluences between 0.36 & 1.06 J/cm²

Fiber Laser

Fiber laser in Mid-Infrared

S.D.Jackson, Nature Photonics, 6,423 (2012)

S.D.Jackson, Nature Photonics, 6,423 (2012)

Caracteristic of laser fiber

Dopant(s)	Host glass	Pump	Laser λ (µm)	Transition	Output power (W)	Slope efficiency (%)	Reference
Er ³⁺ , Yb ³⁺	Silicate	0.975	1.5	$ ^{4} _{13/2} \rightarrow ^{4} _{15/2}$	297	19	21
Tm ³⁺ , Ho ³⁺	ZBLAN	0.792	1.94	${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	20	49	33
Tm ³⁺	Silicate	0.793	2.05	${}^{3}F_{4} \rightarrow {}^{3}H_{6}$	1,050	53	22
Tm ³⁺ , Ho ³⁺	Silicate	0.793	2.1	$5 _7 \rightarrow 5 _8$	83	42	34
Ho ³⁺	Silicate	1.950	2.14	$5 _7 \rightarrow 5 _8$	140	55	23
Tm ³⁺	ZBLAN	1.064	2.31	${}^{3}\text{H}_{4} \rightarrow {}^{3}\text{H}_{5}$	0.15	8	35
Er ³⁺	ZBLAN	0.975	2.8	${}^{4} _{11/2} \rightarrow {}^{4} _{13/2}$	24	13	24
Ho ³⁺ , Pr ³⁺	ZBLAN	1.1	2.86	$5 _6 \rightarrow 5 _7$	2.5	29	25
Dy ³⁺	ZBLAN	1.1	2.9	⁶ H _{13/2} → ⁶ H _{15/2}	0.275	4.5	36
Ho ³⁺	ZBLAN	1.15	3.002	$5 _6 \rightarrow 5 _7$	0.77	12.4	26
Ho ³⁺	ZBLAN	0.532	3.22	${}^{5}S_{2} \rightarrow {}^{5}F_{5}$	0.011	2.8	27
Er ³⁺	ZBLAN	0.653	3.45	${}^{4}F_{9/2} \rightarrow {}^{4}I_{9/2}$	0.008	3	28
Ho ³⁺	ZBLAN	0.89	3.95	$5 _5 \rightarrow 5 _6$	0.011	3.7	29

COPL Centre d'optique, photonique et laser

Mid-IR radiation (especially at 2.94 µm) is ideal for <u>ablation</u> and <u>cutting</u> of biological tissues

\geq Current Medical laser systems rely on old laser technology which is:

- <u>Expensive</u>: high acquisition cost <u>Unreliable</u>: high maintenance cost <u>Cumbersome and Inefficient</u>

<u>Fiber lasers</u> have proven superior in terms of: \geq

- Cost (acquisition and operation) Ruggedness & Reliability Size & Weight

- Beam quality

FibreLase's technology in fluoride glass optical fibers unleashes the development of a new breed of Mid-IR fiber lasers ($\lambda > 2 \mu m$) for biomedical applications

Prototype: 7 W @ 2940 nm

Lasers are increasingly used in medical procedures

• Laser micro-surgery

• Dental cavity removal

• Fractional Laser Resurfacing

Mid-infrared chalcogenide glass Raman fiber laser

AVAL

Silica Fiber

Evolution of Record Capacity in Optical Fibers

Strategie for development

Linear Transmission:

- Increasse Aeff
- Bending losses?

k.Mukasa, IEICE Trans Comm, 94, 2011

Spectral Bandwidth:

- Microstructured/hollow core
- Need for amplifiers

Y.Mimura, ECOC conference, 2012

Spatial multiplexing

- Multicore
- Multimode (Few modes, Few modes groups)
- Multicore + multimode

M.Salsi, ECOC, 2012

Multicore and multimode fibers for spatial division multiplexing

- Uniform Gain;
- Large Aeff
- Low Cross Talk
- Low Noise Figure
- Low Macro-bending
- Adaptability to radiation

Electro-optical fibers

Core diameter: $3.6 \pm 0.4 \mu m$ Numerical Aperture: 0.27±0.01 Cladding outside diameter: $250 \pm 50 \mu m$ Holes diameter: $75 \pm 15 \mu m$

Fig 3. a,b,c,d) Images SEM, à différent grossissment, de la fibre dans laquelle un dépôt métallique a été réalisée.

Twin-hole Fiber Intersection

Special Fibers for Life Science

Alternative Design of Optical Fiber

- Conductivity: σ (RT)> 10⁻³ S /cm;
- \geq 70% transmittance in the visible (400 nm -700 nm);
- Viscosity of the components are similar to T fiber drawing;
- Thermal expansion Coefficients $CTE2 \approx CTE3 \approx CTE4$;
- Mechanical & chemical stability.

LEDEMI, Y; VIENS, J.F; GRAVEL, J.F; RIOUX, M; MESSADDEQ, Y, OPTOGENETIC FIBER, Patent n 61/661,028, June 19, 2012.

Multifonctionnel Fibers

200 Mm

RF textiles

THz fibers

R.He &al., Nature photonics,6,174,2012

Perspectives

1.6 meter diameter lightweight mirror made of fused borosilicate

 \cdot HIGH-RESOLUTION: Large aperture parabolic mirrors from 0.5 to 2.5m.

HIGH-SENSITIVITY: Fast focal ratios down to F/1.5 for NETD detectivity.
LIGHTWEIGHT: Mirrors made of low-CTE glass materials with 75% lightweighting ratio for enhanced thermal stability and mobility.

• **LOW-COST**: Mold-less, low-temperature glass fusion process that provides 75% manufacturing cost reduction.

 \cdot **FLEXIBILITY**: Mirrors can be adapted to standard VIS, SWIR, MWIR and LWIR focal plane arrays.

· **ROBUST**: Survives 200C thermal shocks and 20g accelerations.

-High-res teledetection -IR teledetection -Border patrol -Long-distance surveillance -Airborne surveillance -Drone optics -Arrayed detection -Mining prospection -Forest prospection -Environment monitoring -Astrophysics

J.Viens, Y.Messaddeq, Moldless Lightwidth Mirror BLank Assembly, Patent 61/706,883 (2012).

Long-range mobile teledetection

Prof. YOUNES MESSADDEQ

Project objectives:

This project develops large-aperture and light-weight optics for mobile, field-deployable, long-range infrared teledetection.

Our collaboration with the *Centre d'Excellence des Drones* (Alma, QC) aims at embarking long-range optics aboard drones for civilian prospection applications.

0.5-meter diameter LWIR camera prototype

- 25 km human detection distance
- 300 km aircraft detection distance
- 18 kg weight, foldable, field-deployable
 - 5 Watts power consumption

Medium-altitude long-endurance drone Alma, QC

Long-range mobile teledetection

Prof. YOUNES MESSADDEQ

0.5-meter diameter LWIR camera prototype

- Human detection distance up to 25 km
- Incoming aircraft detection distance 300 km
 - 18 kg weight, foldable, field-deployable

- 5 Watts power consumption

Raw Image

Raw Image

Background Substract

Incoming aircraft 300 km distance (0.7deg above horizon)

Large-aperture mirrors for concentrated solar energy

Diatoms

The diatoms are responsible for 20% of all the photosynthetic CO_2 consumption.

> 50.000 Species (5 μm to 5 mm) Glass Production > 10¹⁰ tons/year

Photonic Band -Gap

Y.Messaddeq e al. J.Coll.InterfaceScience 291(2005)448

Photonics band gap

Use of opals as molds in the preparation of materials with controlled porosity

LASER Emission: Rodamin inside Inverse Opale

COPL Centre d'optique, photonique et lase

JNIVERSITÉ

Marine diatoms as optical chemical sensors

Interfacing the nanostructured biosilica microshells of the diatom *Coscinodiscus wailesii* with biological matter.

De Stefano et al. Appl. Phys. Lett. 87 (2005) 233902

Nano-lasers

Acknowledgements

Canada Excellence Research Chairs

Chaires d'excellence en recherche du Canada

