

Glass and glass ceramic for nonlinear optics: fundamentals to applications

T. Cardinal, E. Fargin, J. J. Videau, Y. Petit, G. Guery (ICMCB)

M. Dussauze, F. Adamietz, V. Rodriguez (ISM)

L. Canioni, A. Royon(LOMA)

Nonlinear Parameters

Third order Nonlinearities

Second order Nonlinearities

Nonlinear Absorption

Nonlinear optics

Nonlinear optical effects

- P : Polarisation
- E : Electric Field
- $\chi^{(n)}$: Linear and Nonlinear susceptibilities
- n : Refractive Index
- SHG : Second Harmonic Generation
- THG : Third Harmonic Generation

S1 ---ω₁

 $\chi^{(3)}(-\omega_4,\omega_1,-\omega_2,\omega_3)$

 $\chi^{(3)}(-\omega,\omega,-\omega,\omega)$

 $\chi^{(3)}(-3\omega,-\omega,\omega,\omega)$

 $\chi^{(3)}(-\omega_s,\omega_p,-\omega_s,\omega_p)$

 $\chi^{(3)}(-\omega,-\omega,\omega,\omega)$

Third order nonlinearity

S2

 ω_2

 ω_4

Functional Glasses for Energy and Information

- Four wave mixing

Self focusing

Third Harmonic generation

- Stimulated Raman

- Two photon absorption

Self phase modulation

Soliton Propagation

Optical switching

- Kerr effect

The formalism of nonlinear optics

Polarization of the material described by a perturbative development:

• 3rd-order polarization:

$$\vec{P}_{i}^{(3)}(\vec{r};t) = \varepsilon_{0} \int_{-\infty}^{t} \int_{-\infty}^{t} \int_{-\infty}^{t} R_{ijkl}^{(3)}(\vec{r};t-t_{1},t-t_{2},t-t_{3}) \vec{E}_{j}(\vec{r};t_{1}) \vec{E}_{k}(\vec{r};t_{2}) \vec{E}_{l}(\vec{r};t_{3}) dt_{1} dt_{2} dt_{3} dt_{3} dt_{3} dt_{4} dt_{5} dt_$$

• **3**rd-order susceptibility = Fourier transform of the 3rd-order response function. \rightarrow describes the nonlinearities of the glass.

$$\chi_{ijkl}^{(3)}(-\omega_{\sigma};\omega_{1},\omega_{2},\omega_{3}) = \int_{-\infty}^{+\infty} R_{ijkl}^{(3)}(t_{1},t_{2},t_{3}) \exp\left[i(\omega_{1}t_{1}+\omega_{2}t_{2}+\omega_{3}t_{3})\right] dt_{1}dt_{2}dt_{3}$$

The different contributions to the nonlinear response

- Electronic polarization: instantaneous nonlinear distortion of the electronic cloud around the nucleus (response time ~ 1 fs).
- Nuclear response: rearrangement of the nucleus position in the new potential created by the electrons electric field (response time ~ 100 fs-1 ps).
- Electrostrictive response: increase of the density, inducing an increase of the nonlinear response (response time ~ 1 ns).
- Thermal response: absorption of the electric field followed by dissipation of the energy under the form of heat, inducing a variation of the nonlinear response (response time ~ 10 µs).

$$\chi^{(3)} = \chi^{(3)}_{elec} + \chi^{(3)}_{nuc} + \chi^{(3)}_{str} + \chi^{(3)}_{th}$$

With fs pulses, electrostrictive and thermal contributions are neglected because their building-up time is too long compared to the pulse duration.

Third order nonlinearity

Fused silica

Niobium oxide containing Glasses

Evolution of the Kerr effect

Measured at 800 nm

Glass local structure

Functional Glasses for Energy and Information

Structural units of Tellurite network

Medium range order

OKE : optical Kerr effect

Tellurium-Thallium glass	50TeO ₂ -50Tl ₂ O	70TeO ₂ -30Tl ₂ O Electronic	75TeO ₂ -25Tl ₂ O	
THG susceptibility $(\times 10^{-22} \text{ m}^2.\text{V}^2) (\pm 30\%)$	1042.1	973.4	668.9	
OKE susceptibility $(\times 10^{-22} \text{ m}^2.\text{V}^{-2}) (\pm 10\%)$	29.4	47.6	48.2	

Strong relation between the glass network and the third order nonlinearity

Raman gain

Fiber Transmission

Raman gain in fused silica

Raman gain bandwidths are fixed by the **bandwidth of the Raman active medium**.

Raman Gain Spectrum

Functional Glasses for Energy and Information

Vibrational response

80TeO₂-(20-y)TaO_{5/2}-yZnO

Hyperpolarisability and glass structure

Hyper Rayleigh

Drastic decrease of the hyperpolarizability during the ZnO introduction.

D

Hyperpolarizability and Raman Gain

Supercontinuum generation

80TeO₂-10ZnO-10Na₂O

I. Savelii et al., Optics Express, Vol. 20 Issue 24, pp.27083-27093 (2012)

> Self phase modulation Raman Gain Four Wave Mixing THG

Theoretically up to 3000 nm if no Hydroxyls

Supercontinuum generation (a) Exp As_2S_3 Spectrum [20 dB/div] I. Savelii et al., Optics Express, Vol. 20 Issue 24, pp.27083-27093 (2012) (b) Sim 1000 1500 2000 2500 3000 3500 4000 Wavelength [nm] Spectrum [20 dB/div] (c) Simulation without SH and OH groups 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 Wavelength [nm]

Functional Glasses for Energy and Information

22

Quantum dots for NLO

Glasses doped semiconductor quantum dots PbS, PbSe, PbTe

- narrow band-gap,
- large optical nonlinearity
- fast response time

S. Ju, Optics Express, 19, 3, (2011), p2599

metallic nanoparticles for NLO

non-spherical silver nanoparticles

666

Enhancement of nonlinearity 2 order of magnitude

A. Stalmashonak , Optics Letters 35, 10, (2010), p1673 S. Mohan Optics Express, 20, 27, (2012, p28655

Large aspect ratio metal nanoparticles

□ Nonlinear optical effects

$$P = \varepsilon_0 \left(\chi^{(1)} E(\omega) + \chi^{(2)} E(\omega) E(\omega) + \chi^{(3)} E(\omega) E(\omega) E(\omega) + \ldots \right)$$

SHG (2\omega)
n \approx f(E)
n = n_0 + \zeta E

Thermal Poling

Material performance

$$\mathsf{P}^{\mathsf{NL}}(2\omega) = \chi^{(3)} \mathsf{E}_{\mathsf{dc}} \mathsf{E}(\omega) \mathsf{E}(\omega)$$
$$\approx \chi^{(2)}$$

Need for quasi phase matching

P. N. Butcher and D. Cotter, *The elements of non linear optics. Cambridge University* press, 1990.

Structuration of SHG

Functional Glasses for Energy and Information

January 6-11, 2013

D

Analysis of µSHG signal

Symetry control

Pattern implementation

- A. Lipovskii et al.,
- B. Solid State Ionics 181 (2010) 849-855

Materials structure modification

Functional Glasses for Energy and Information

A glass-ceramic for frequency doubling

Before heat treatment Centrosymetric glass After heat treatment

Non-Centrosymetric crystallites

➤ Characteristics :

Size and space control of μ -crystallites precipitation :

•Sub - micro or nano crystals for transparency or

low refractive index difference between the matrix and the crystallites

Homogenous bulk crystallization

H. Jain, Ferroelectrics, 306, 111-127 (2004)

Functional Glasses for Energy and Information

Current material :

- Large-sized Monocristals

- Cut out with a specific way

Potassium Dihydrogen Phosphate

Vitroceramic for NLO

KNbO₃ KTiOPO₄ (KTP) Ba₂TiSi₂O₈ LiNbO₃

SHG Increases with crystallization ratio

Trade off to be reached:

Transparency/SHG activity

Control of low refractive index difference

between the crystalline phase and the glass

 $25La_2O_3$ - $25B_2O_3$ - $50GeO_2$ Crystalline phase LaBGeO₅ (200 nm à 200 µm)

 $15K_2O- 15Nb_2O_5-68TeO_2-2MoO_3$ Crystalline phase KNbO₃

Effect of Poling

 $15K_2O- 15Nb_2O_5-68TeO_2-2MoO_3$, Crystallites KNbO₃ Second order NLO increase by a factor 6 to 20 [58].

In $0.7Na_2B_4O_7$ - $0.3Nb_2O_5$, Crystallites NaNbO₃ (30 nm) SHG signal measured after poling

Spherulite

Spherulites distributed in the matrix with distances greater than the coherence length,

Total second harmonic intensity Sum of the individual contributions (incoherent case).

Similar phenomenon in 25La₂O₃-25 B₂O₃-50GeO₂ Cristalline phase LaBGeO₅ Li₂O-SiO₂-Nb₂O₅

X, Y axis : 30 X 30 µm

Functional Glasses for Energy and Information

January 6-11, 2013

Nonlinear absorption

Nonlinear absorption

 λ_2

 λ_2

 λ_1

A*

Α

Short pulsed Lasers

Nonlinear Absorption

Possible to implement local $\chi^{(2)}$ and $\chi^{(3)}$

Local THG in silver containing glass

THG microscopy

3ω resonant species induced by femtosecond laser irradiation

Local Formation of Clusters Ag_m^{x+} (formed of Ag⁰ atoms and Ag⁺ ions)

Wavelength (nm)

Functional Glasses for Energy and Information

THG for data storage

10 µm

L. Canioni, Optics Letters, Vol. 33 Issue 4, pp.360-362 (2008)

Exaltation of the THG signal due to the resonance

THG imaging of the 3 layers

3D data recording and reading

Nonlinear optical process

Confocal per nature

Local SHG in silver containing glass

Summary

Understanding of the relation glass structure / NLO properties

- ✓ resonant (Raman gain, Nonlinear absorption)
- ✓ non-resonant (Kerr effect, THG)
- ✓ Nonlinear absorption
- Impact of glassceramics (Loss issues)
 - ✓ Second order nonlinearity
 - ✓ Metal or semiconductor
- Control of local phase separation or local crystallization
 - ✓ Third order and Second order nonlinearity

****Acknowledgments

P. Thomas, J.R. Duclere S.P.C.T.S., Université Limoges, France.

J. Trebosc, B. Revel, L. Montagne **UCCS, Université Lille Nord de France, France**

L. Petit, K. Richardson COMSET, Clemson University, USA

J.Y. Choi, C. Rivero, G. Stegeman, M. Richardson **CREOL, University of Central Florida, USA** (*co-tutelle de thèse-Univ. Bordeaux1)

Table 1. Various highly nonlinear fibers and their SC generations in picosecond regime. 10 dB bandwidths were obtained from the SC spectra in the publications. When determining the 10 dB bandwidth, the strong pump peak was excluded.

Fiber	Pump wavelength (nm)	Nonlinear coefficient (km ⁻¹ W ⁻¹)	Fiber length (m)	Pulse width (ps)	Peak power of pulse (W)	SC total bandwidth (nm)	10 dB bandwidth (nm)
Our tapered fiber	1064	800-5500	0.75	15	375	350-2000	780-1890
Silica tapered fiber [20]	1064	8-40	2	3-4	19608-32680	350-1750	380-1750
Silica microstructured fiber [21]	1064	-	2	21	24000	400-2250	420-1620
Silica microstructured fiber [22]	1064.5	8.5	100	600	4200	600-1750	650-1750
Silica microstructured fiber [5]	647.1	150	3	60	400	440-1130	480-940
Silica microstructured fiber [23]	1050	11	5	350	8893	400-1700	600-1700

M. Liao, Optics Express, 20, 26 (2012), p574

Functional Glasses for Energy and 7-11/01/2013 Information

Material performance

SHG nanocrystallites

Fig. 4. SHG efficiency of KNS glasses vs heating temperature for 24 h and 48 h (no. 2') treatments.

SHG efficiency can be connected to combination of third-order non-linearity with spatial modulation of linear polarizability

Pump-probe experimental setup

- Absolute measurements.
- Measurement uncertainty ~10%.

materials.

- Difficult to implement on structured materials (maintain of the polarization under microscope, small nonlinear interaction length, etc...).