

PROTON BEHAVIOR AT GLASS/WATER INTERFACES: IMPLICATIONS ON REACTIONS AND PROTON TRANSPORT

Stephen H. Garofalini

Interfacial Molecular Science Laboratory
Department of Materials Science and Engineering

shg@rutgers.edu

Grad Students: T. Mahadevan, G. Lockwood*

DOE Office of Basic Energy Science Div. of Chemical Sciences and Div. of Matl's Sci. *Corning Fellow *AFCI Fellow, DOE Office of Nuclear Energy

OUTLINE

- Motivation
- Dissociative Water Potential
- Interactions between Water and Silica Surfaces
- Proton Transport in Water
- Proton Adsorption Sites and Lifetimes on SiO₂

Motivation:

Experimental results regarding the surprisingly high thermal expansion of nanoconfined water.

But a second one developed based on our results that might be relevant to the electrochemical studies of Nogami, Abe, etc. showing high proton conductivity in nanoporous silica exposed to water.

ANOMALOUS EXPANSION OF NANOCONFINED WATER

Xu and Scherer, MRS Proc. Vol 790 2004

PREVIOUS SIMULATIONS OF WATER CONFINED IN SILICA PORES USED:

RIGID WATER MODELS (SPC/E, TIP4P, etc)

RIGID SILICA (glassy or crystalline)

Milischuk et al. JCP(2012) Shaik et al. JCP (2010) Thompson et al JPC B (2007) Giovambattista et al Phys Rev E (2006) Wensink et al Langmuir (2000) Ricci et al J Phys Cond Mat. (2000) Spohr et al J. Molec Liq (1999) Gallo et al Phil Mag (1999)

NEED MORE REALISTIC POTENTIALS

PREVIOUS SIMULATIONS OF WATER CONFINED IN SILICA PORES USED:

RIGID WATER MODELS (SPC/E, TIP4P, etc)

RIGID SILICA (glassy or crystalline)

Milischuk et al. JCP(2012) Shaik et al. JCP (2010) Thompson et al JPC B (2007) Giovambattista et al Phys Rev E (2006) Wensink et al Langmuir (2000) Ricci et al J Phys Cond Mat. (2000) Spohr et al J. Molec Liq (1999) Gallo et al Phil Mag (1999)

However, these popular models do not match liquid equation of state.

<u>RUTGERS</u>

Soper, ChemPhys(2000)

OTHER BULK WATER PROPERTIES Our MD simulations vs other MD and experiment

	MD (here)	MD*	EXP
ΔH_{vap}^{exp} (kcal/mole)	10.5	10.0	10.5
μ (D)	2.6	2.1- 3.0	2.6
D (x10 ⁻⁵ cm²/s) 298K	2.45	1.1- 5.0	2.3

* TIP4P, SPC/E and other models

NEW WATER POTENTIAL MATCHES EXPERIMENTAL DATA:

LIQUID DENSITY-TEMPERATURE CURVE STRUCTURE FREQUENCY SPECTRUM HEAT OF VAPORIZATION DIPOLE MOMENT DIFFUSION CONSTANT

Mahadevan and Garofalini J Phys Chem B 111(2007)8919

Interactions between silicic acid molecule and a water molecule

Interaction energy

MD simulation 10.6 kcal/mole

ab-initio calculations^{*} 9.0-11.6 kcalmole

•Pelmenschikov et al, JPC 96 (1992) 7422 MO calc. gaussian, w and w/o MP2

Before we look at nanoconfined water,

Expose silica glass surface to water vapor

Simulations show expected mechanisms commonly considered

BREAK UP NETWORK STRUCTURE

COORDINATE WITH UNDERSATURATED SURFACE IONS

Silanol concentrations as a f(time) approach experimental results

RUTGERS

Put water between silica slabs (t=3nm and t=7nm) Heat to various Temperatures under 1 atm pressure

Garofalini et al ChemPhysChem2008, Xu et al Langmuir 2009.

Garofalini et al ChemPhysChem 9 (2008), Xu et al Langmuir (2009).

Density near interface plays significant role in expansion behavior

Garofalini et al ChemPhysChem 9 (2008), Xu et al Langmuir (2009).

Minassian et al* showed that the CTE of bulk water increases as Pressure (density) increases.

Increase Density, Increase CTE

*Minassian et al JCP 75 (1981) 3064

Garofalini et al ChemPhysChem2008, Xu et al Langmuir 2009.

<u>Rutgers</u>

NEW WATER POTENTIAL MATCHES EXPERIMENTAL DATA:

LIQUID DENSITY-TEMPERATURE CURVE STRUCTURE FREQUENCY SPECTRUM HEAT OF VAPORIZATION DIPOLE MOMENT DIFFUSION CONSTANT

and

TRANSFERABLE TO NANOCONFINED WATER

Simulations reproduce many features seen experimentally for bulk water and is transferable to nanoconfined water.

However, what are the molecular mechanisms of the reactions occurring in the simulations causing the silanol sites and how does this affect proton transport?

Simulations also show additional reaction mechanisms beyond these obvious ones

BREAK UP NETWORK STRUCTURE

COORDINATE WITH UNDERSATURATED SURFACE IONS

<u>Rutgers</u>

Each takes ~150 fs

MD simulations match AIMD simulations

MD Mahadevan and Garofalini, JPCC 2008 AIMD Ma et al, JCP2005

RUTGERS

Geisinger, Gibbs, Navrotsky PhysChemMiner 11(1985)266 Van Heusden et al, IEEE Trans. Nucl. Sci. 46 (1999) 1562

Energy vs. Angle

RUTGERS

Soooo...

We have protons on bridging oxygen sites, protons on SiOH₂ sites, and protons on SiOH sites

And excess H_3O ions near the interface.

We need to know how well the simulations reproduce proton

transport (PT) in bulk water.

Therefore, we need to add an H_3O ion to bulk water...

But we first need some background regarding PT in water

Lot's of background regarding Proton Transfer in water

But real molecular data comes from ab-initio MD

simulations (AIMD) and classical simulations specifically

designed for studying proton transport, the most

advanced being MS-EVB models

So, we'll compare to those.

PROTON TRANSPORT IN WATER

Eigen H₉O₄+ Zundel $H_5O_2^+$

Eigen H₉O₄+

Free Energy decreases with decreasing O-O separation distance

Marx CPC 2008

Our MD Simulations H₃O⁺ IN BULK WATER

Eigen Zundel MATCHES PROTON TRANSPORT VIA EIGEN AND ZUNDEL COMPLEXES

What causes a 1st shell water to get close to the Hydronium ion to form the Zundel complex?

FIRST AND SECOND SHELL WATERS AROUND H_3O^+ ION

Schmitt JCP1999

FIRST AND SECOND SHELL WATERS AROUND H_3O^+ ION

FIRST AND SECOND SHELL WATERS AROUND H_3O^+ ION

Change in 2nd shell waters HB to 1st shell affects a 1st shell water, enabling formation of the Zundel and proton transfer (see next slide). MD result showing 1st shell waters (blue O) around H₃O ion (yellow) and two 2nd shell waters (green), with arrow pointing to HB change in (b), but more dynamic than just HB rupture causing Zundel and PT in (d).

PROTON TRANSPORT IN WATER MD SIMULATION

Eigen

Zundel

Eigen

LIFETIME AUTOCORRELATION FUNCTIONS

Probability that hydronium O* (that formed at time 0) will be O* at some other time t

$$c_{c}(t) = \frac{\langle h(0)H(t) \rangle}{\langle h \rangle}$$

<u>Continuous c(t)</u>: continuously protonated from 0 to t

$$c_i(t) = \frac{< h(0)h(t) >}{< h >}$$

Intermittent c(t): protonated at 0 and t, regardless of protonation state between 0 and t

RESULTS OF ONE H₃O IN BULK WATER AND H₃O LIFETIMES

Our MD

Chen and Voth MS-EVB3 J. Phys. Chem. B, Vol. 114, No. 1, 2010

Our MD results similar to the highly developed MS-EVB3 model for exponential behavior and long time t^{-3/2} behavior RUTGERS

Table 2. Comparison of the Diffusion Coefficient D in Å²/ps of the Center of Excess Charge Resulting from Different Approaches

Exces	s Proton	
Garofalini 283 K (NpT)	0.25	this work
Garofalini 283 K (NVE)	0.26	this work
Garofalini 296 K (NpT)	0.39	this work
Garofalini 298 K (NVE)	0.38	this work
Garofalini 323 K (NpT)	0.61	this work
Garofalini 325 K (NVE)	0.67	this work
MS-EVB2 298K	0.29	36
MS-EVB 298K	0.35	34
MS-EVB3 298K	0.36	36
aMS-EVB3 298K	0.41	37
qMS-EVB3 298K	0.50	36
MS-EVB 298K	0.77	33
MS-EVB 298K	0.83	35
experimental	0.93	58, 59

Hofer et al. J Chem. Theory Comp, 2012

SUMMARY

Exceedingly robust dissociative water potential for MD simulations.

Uniquely reproduces the trend of increased CTE of nanoconfined water as a function of pore size similar to experiment

Provides mechanism for high CTE of nanoconfined water

Shows appropriate reactions on silica surfaces

Shows proton transport in water via Eigen and Zundel complexes

Shows enhanced hydronium ion formation at silica surfaces, with reactions similar to AIMD

Shows lifetimes for protons in water similar to AIMD and MS-EVB, but at much less computational cost

Reactions between moisture and silica during irradiation

High energy PKA disrupts structure But re-formation of bonds...'self-healing'...can occur

IRRADIATION OF DRY SILICA GLASS

Kubota et al. Nucl. Instr. Meth. Phys. B, 202 (2003)

However, no atomistic models have included water

Presence of H₂O can inhibit bond re-formation

Insert either intact H₂O molecules within the silica structure or as already dissociated molecules (H⁺ and OH⁻) – then irradiate – Results are the same

Destruction of 5- and 6-Member Rings

3-mem Rings (Strained)

8-mem Rings

What occurs during irradiation of silica in contact with a film of water?

Does the formation of larger rings allow for ingress of water into the glass?

SIDE VIEW – THIN SECTION INTO FIGURE

CONCLUSIONS Without changing parameters in the potential

Simulations reproduce BULK and NANOCONFINED water

water REACTIONS on SiO₂ surfaces

PROTON transport and lifetimes in bulk water

and

Provide mechanism of high thermal expansion of nanoconfined water

and

Show that moisture inhibits self-healing in SiO₂ under irradiation, opening network to further ingress of protons and water

