Surface Chemistry of Glass: Interfacial water and mechanochemical properties

Hongtu He, Laura C. Bradley, Zachary R. Dilworth, Carlo G. Pantano, and Seong H. Kim

Materials Research Institute, Pennsylvania State University

Engineering Conferences International Functional Glasses January 6 -11, 2013 Sicily, Italy

Acknowledgement

- Laura Bradley, Zach Dilworth undergraduate REU through support from NSF IMI for New Functionality in Glass (Grant No. DMR-0844014).
- Hongtu He an exchange student from China through support from NSF IMI for New Functionality in Glass (Grant No. DMR-0844014).
- This work was supported by National Science Foundation (Grant No. DMR-1207328).

Surface properties in vacuum conditions are intrinsic properties of materials;

Effects of vapor adsorption on SiO_2/Si wear

0.7 N load on 3mm dia fused silica ball sliding on SiO_2/Si (Nominal P_{Hertzian} = 360 MPa)

Optical profilometry

Barnette, Asay, Kim, Guyer, Lim, Janik, and Kim, Langmuir 2009, 25, 13052-13061

MEMS Reliability Taxonomy

Class I No Moving parts

Class II Moving Parts, No Rubbing or Impacting Surfaces Class III Moving Parts, Impacting Surfaces Class IV Moving Parts, Impacting and Rubbing Surfaces

Accelerometers Pressure Sensors Ink Jet Print Heads Strain Gauge

Gyros Comb Drives Resonators Filters

TI DMD Relays Valves Pumps

Optical Switches Corner Cube Refl. Shutters Scanners Locks Discriminators

Romig, et. al. Acta Materialia **51** (2003) 5837

Unreliable Dynamic Interfaces have Limited the Development of Complex MEMS

"Courtesy Sandia National Laboratories, SUMMiTTM Technologies, www.sandia.gov/mstc"

MEMS side-wall tribometer

Initially coated with "lubricious" fluorinated self-assembled monolayer

Device fails once the lubricious coating layer is worn off and the adhesion of the newly exposed bare surfaces becomes larger than the actuation force.

D. B. Asay, M. T. Dugger, and S. H. Kim, Tribol. Lett. 2008, 29, 67.

In the presence of alcohol vapor, the device does not fail ...

D. B. Asay, M. T. Dugger, and S. H. Kim, *Tribol. Lett.* **2008**, 29, 67. D. B. Asay, M. T. Dugger, J. A. Ohlhausen, and S. H. Kim, *Langmuir* **2008**, *24*, 155.

<u>Micro-scale</u> lubrication with a molecular adsorbate film

(12) United States Patent Dugger et al.

(54) METHOD FOR LUBRICATING CONTACTING SURFACES

(75) Inventors: Michael T. Dugger, Tijeras, NM (US);
James A. Ohlhausen, Albuquerque, NM (US); David B. Asay, Boalsburg, PA (US); Seong H. Kim, State College, PA (US)

A Splash of Alcohol Eases the Friction When Tiny Gears Meet

(10) Patent No.:

(45) Date of Patent:

US 8,071,164 B1

Dec. 6, 2011

Increased Operating Life of Gear Train with Vapor Phase Lubrication

gear train on aging module

M. T. Dugger

FOTAS monolayer alone, $t_{50} = 4.7 \times 10^4$

With VPL, device was stopped at 4.8x10⁸ cycles <u>without failure</u>

1000 ppm pentanol, <100 ppm H₂O

VPL is Effective on MEMS Devices with Thermal M. T. Dugger

VPL with pentanol produces extraordinary operating life in a variety of MEMS devices

Understanding accelerated wear of SiO₂ by water and wear prevention by alcohol

Density Functional Theory (DFT) calculation of Si-O-Si bond dissociation by rxn with gas molecule

Model System:

Si-O-Si Rupture via Methanol

 β -cristobalite (111) Red - OYellow – Si White – H Grey - CTRANSITION STAT ΔE_a $CH_3OH_{(gas)}$ FINAL INITIAL Stable & low density form of SiO₂

Barnette, Asay, Kim, Guyer, Lim, Janik, and Kim, Langmuir 2009, 25, 13052-13061

DFT calculation of activation energy for different surface terminations

Alcohol termination (OR) increases the activation barrier necessary to break Si-O-Si linkages...

$$\begin{array}{ccc} OR_1 & & R_1O \\ I & & E_{act} & & A_1O \\ SI & & + HOR_2 \xrightarrow{E_{act}} & SI \\ O & & & HO \\ SI & & & SI \end{array}$$

R ₁	R ₂	E _a (kJ/mol)
Н	Н	114
CH ₃	Н	151
Н	CH ₃	112
CH ₃	CH ₃	154
propyl	propyl	224

Barnette, Asay, Kim, Guyer, Lim, Janik, and Kim, Langmuir 2009, 25, 13052-13061

"Amorphous oxide of Si is boring; multicomponent silicate glasses are more complicated & interesting" Water adsorption and penetration can cause ion-exchange with mobile/leachable ions and hydrolysis of Si-O-Si network

$$=Si-O^{-}Na^{+} + H_{2}O \longrightarrow =Si-OH + Na^{+} + OH^{-}$$
$$=Si-O-Si = + OH^{-} \longrightarrow =Si-OH + =Si-O^{-}$$
$$=Si-O^{-} + H_{2}O \longrightarrow =Si-OH + OH^{-}$$
$$=Si-O-Si = + H_{2}O \longrightarrow =Si-OH + HO-Si =$$

R.A.Schaut, C.G.Pantano. 2005

Influence of water vapor on crack propagation in soda lime glass

Stress-intensity factor, K₁

S. M. Wiederhorn J. Am. Ceram. Soc. **50**, 407-414 (1967)

Charles & Hillig Theory

Molecules possessing proton donor sites and lone-pair orbitals can enhance the crack growth rate by coupling across the Si-O bond to form an activated complex...

Freiman, Wiederhorn, & Mecholsky, J. Am. Ceram. Soc. **92**, 1371 (2009)

How does water adsorption affect scratch behaviors of glass?

Scratching glass surface in humid conditions

Load: 0.2 N

Humidity dependence of wear of *fused quartz* surface rubbed with *pyrex ball*

ubstrate Num

Optical profilometry images of the substrate

Humidity dependence of wear of soda lime glass surface rubbed with pyrex ball

Number of Passes

Optical profilometry images of the substrate

Total displaced volume

Optical profilometry image of pyrex ball rubbed in 20% RH → Deposition of substrate wear debris

Optical profilometry image of pyrex ball rubbed in 90% RH → Wear of ball

L. Bradley, Z. Dilworth,,, C. G. Pantano, & S. H. Kim "Hydronium Ions in Soda-lime Silicate Glass Surfaces" J. Am. Ceram. Soc. (DOI: 10.1111/jace.12136) (Article first published online: 24 DEC 2012) A small increase in humidity from dry air drastically change the surface scratch behavior of glass

As RH approaches saturation, the SLG surface becomes "wear-resistant"...

In 20% RH, the wear of the SLG substrate continues as the # of scratch cycles increases In 90% RH, the damage to the SLG substrate is made initially by a few asperity contacts; but it does not grow.

Water adsorption on glass surface matters...

If the substrate is SiO₂, it's easy to measure water adsorption isotherm...

carrier gas (Ar or dry clean air)

Water adsorption on SiO₂ in humid ambience

D. B. Asay and S. H. Kim, J. Phys. Chem. B 2005, 109, 16760

Water contact angle alone cannot tell you much about the structure of water on the solid surface.

Water adsorption on OH-SAM on Au; the "strongly bound" water on organic OH surface does <u>not</u> form ice-like structure

A. Tu, H. R. Kwak, A. L. Barnette, S. H. Kim, Langmuir 2012, 28, 15263–15269.

Water contact angle alone cannot tell you much about the structure of water on the solid surface.

Although COOH-SAM/Au also show a water contact angle is $<5^{\circ}$, it behaves quite different from OH-SAM/Au and OH/SiO₂.

A. Tu, H. R. Kwak, A. L. Barnette, S. H. Kim, Langmuir 2012, 28, 15263–15269.

PM-RAIRS Intensity (a.u.)

Sum-Frequency-Generation (SFG) Vibration Spectroscopy

$$I(\omega_{SFG}) \propto \left|\chi_{eff}^{(2)}\right|^2 I(\omega_{VIS}) I(\omega_{IR})$$

SFG occurs at the interface or in the bulk with <u>no inversion symmetry</u> $|\chi^{(2)}|^2 \neq 0$

To generate SFG signals: $I(\omega_{SFG}) \propto |\chi_{eff}|^2 I(\omega_{VIS}) I(\omega_{IR})$

 $\chi_{eff}^{(2)} \neq 0$

No inversion symmetry in both molecular and optical length scales

Piezoelectric crystals Crystalline biopolymers Interfaces

Centrosymmetric crystals (such as NaCl) Symmetrically arranged groups (such as CH₂ in well-packed SAM or lipid bilayer)

Amorphous polymers Bulk water & <u>vapor</u> <u>Glass</u>

Co-adsorption of water & alcohol on SiO₂

A. L. Barnette and S. H. Kim, *J. Phys. Chem. C* **2012**, 116, 9909-9916.

Propanol mole fraction

in the vapor mixture

of proanol & water

y=1.00

y=0.88

y=0.60

y=0.40

v=0.36

y=0.35

y=0.35

v=0.24

y=0.00

2900

Log(1/R)

2800

ATR-IR spectra

3300

3000

Wavenumber cm⁻¹

Co-adsorption of water & alcohol on SiO₂

A. L. Barnette and S. H. Kim J. Phys. Chem. C 2012, 116, 9909-9916

Water adsorption on Glass as ftn of RH

(glass cleaning = ethanol rinsed, and then soaked/aged in water for 3 hr)

L. Bradley, Z. Dilworth,,, C. G. Pantano, & S. H. Kim "Hydronium Ions in Soda-lime Silicate Glass Surfaces" *J. Am. Ceram. Soc.* (DOI: 10.1111/jace.12136) (Article first published online: 24 DEC 2012)

The water molecules diffusing into the glass surface may find protons in the Na⁺-leached sites and form hydronium ions.

Na⁺ = 0.1nm K⁺ = 0.14nm H₃O⁺ = 0.14nm

CORNING Gorilla[®] Glass

Arun K. Varshneya et al. 2010

Laura Bradley, Zach Dilworth, et al. J. Am. Ceram. Soc. (DOI: 10.1111/jace.12136)

Water ingression into glass

H₂O

H₂O

H₂O

H₂O

H,0

H₂O

H,0

H₂O

H₂O

H₂O

H,O

Formation of H³O+ formation in the Na⁺-leached site??

Searching for more supporting evidences..

The wear resistance at 90% RH is *not* observed for *pyrex glass substrate* rubbed with pyrex glass ball

40%RH

90%RH

-100 0 1 Distance (μm) 100

-100 0 1 Distance (μm) 100

The wear resistance at 90% RH is <u>not</u> observed for **AF45** alkali-free borosilicate glass rubbed with pyrex glass ball

How about chemically-strengthened glasses?

The surface chemistry of counter-surface sliding against glass matters...

Not only vapor environment, but also counter surface of rubbing matter...

Substrate = Si wafer with native SiO_2

J. Yu, S. H. Kim, B. Yu, L. Qian, and Z. , ACS Appl. Mater. Interfaces 2012, 4, 1585-1593.

We expect a soft material would get easily damaged when rubbed with a hard material...

Hardness:

vs.

 $\frac{\text{Ball}}{\text{Al}_2\text{O}_3} = 20\text{GPa}$ $\text{Si}_3\text{N}_4 = 14.5\text{GPa}$ $\text{SiO}_2 = 6.0\text{GPa}$ pyrex = 4.3GPa

Soda lime glass = 5.9GPa

Substrate

No surprise in dry N₂ environment...

SiO₂ ball

 AI_2O_3 ball -10 Height (µm)

0

Distance (µm)

100

In 90% RH, *SiO*₂ *ball* wears and the scratch in *soda lime glass* is negligible.

Height (µm) 2 10

15

Height (µm)

5

Height (µm) O

5

Height (µm) -01-.0-.0-

5

-100

12 µm

-100 0 100 Distance (μm)

6.3 μm

-100 0 100 Distance (μm)

 $2 \ \mu m$

-100 0 100 Distance (μm)

6.6 μm

0

Distance (µm)

100

SiO₂ ball

Dry N₂

20%RH

40%RH

90%RH

In all humidity, the "hard" Si₃N₄ ball wears and the "soft" soda lime glass is almost intact.

90%RH

0.9

0.6

In intermediate humidity, AI_2O_3 ball wears and the scratch into soda lime glass by is very small.

Protecting glass from being scratched using "simple" alcohol adsorption

The wear of SLG / pyrex glass interface can be shut off by one monolayer-thic alcohol adsorption

Mechanical property of surface region of glass ???

Indentation load-displacement curve

Indentation depth dependence of elastic modulus and harness of Asahi soda-lime glass surface

Humidity = 40 - 60%

Does the surface have better mechanical strength than the bulk?

J.A. Howell et al. J. Non-Cryst. Solids, 354 (2008) 1891–1899

Or is it just a measurement artifact?

A. Bolshakov, G.M. Pharr, J. Mater. Res. 13 (1998) 1049. K. O. kese, Z. C. Li, & B. Bergman, Mater. Sci. Eng. A 204 (2005) 1.

Conclusions

- Water activity at glass surface
 - equilibrium with the gas phase water
 - Quite different from that at SiO₂ surface
 - At high RH, H₃O⁺ ions seem to be formed in the interfacial region
- Scratch resistance under shear
 - Mechanochemical effects; not just mechanical.
 - Different from stress corrosion or crack propagation
 - Functions of vapor condition and counter-surface chemistry

Nano-indentation of Diamond-like carbon (DLC)

H _f (nm)	E _r (GPa)	H (GPa)
120	59.3 🗆 0.5	5.6 🗆 0.1
90	58.6 🗆 0.6	5.6 🗆 0.1
50	43.2 🗌 1.1	4.6 🗆 0.2