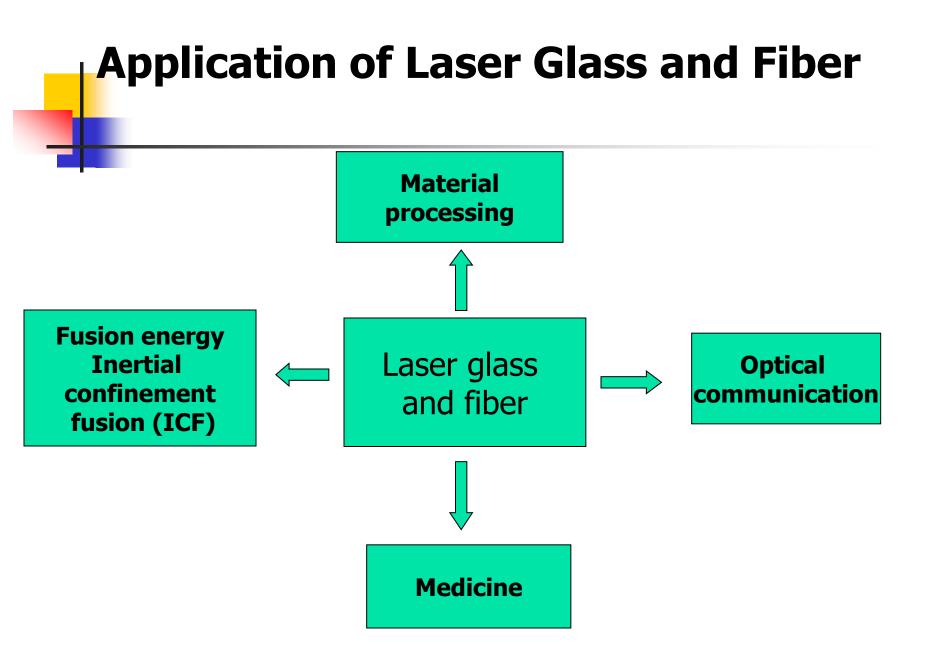
# High power laser glass and its application

#### Lili Hu

Shanghai Institute of Optics and Fine Mechanics, CAS, China

## Outline


- History and basic theory of laser glass
- High power Nd:phosphate laser glass and its application
- High power Nd:glass fabrication technologies
- High power Yb:silica fiber and its fabrication
- Outlook on next generation high power laser material.

## 1 What's laser glass

- Laser glass is a material which can lase under xenon lamp or laser diode pumping;
- In glass, laser has been mostly observed in rare earth ion doped case;
- Nd:glass is an important high power laser glass;
- Laser glass works in both bulk and fiber forms.

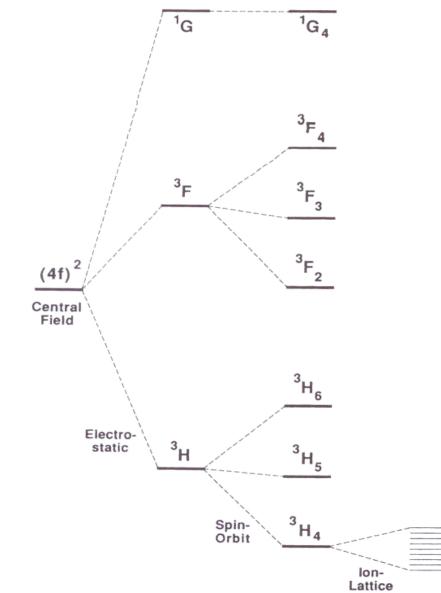
### **History of laser glass**

- In 1960, Snitzer in US found first Nd:silicate glass;
- In 1960, Snitzer found laser in Nd, Er doped glass fiber;
- A.O company in US first developed ED-2 Nd:silicate glass;
- In late 1970s, Hoya company in Japan developed Nd:phosphate glass.
- Er:phosphate glass was developed in 1980s;
- High power Yb:silica fiber laser was developed since 2000.



## Rare earth ions in glass

#### Glass is a good host for rare earth ions


- Rare earth ion concentration can be widely adjusted in glass;
- The spectroscopic properties of rare earth ions in glass host can be modified by composition through ion-host interaction.

## Three widely used rare earth ions in glass

- The most popularly used rare earth ions in glass are neodymium, erbium and ytterbium.
- Nd<sup>3+</sup> doped phosphate glass is widely used in ICF facility;
- Er<sup>3+</sup> doped silica fiber is commercially applied in optical communication.
- Yb<sup>3+</sup> doped silica fiber is now getting use in industrial material processing.



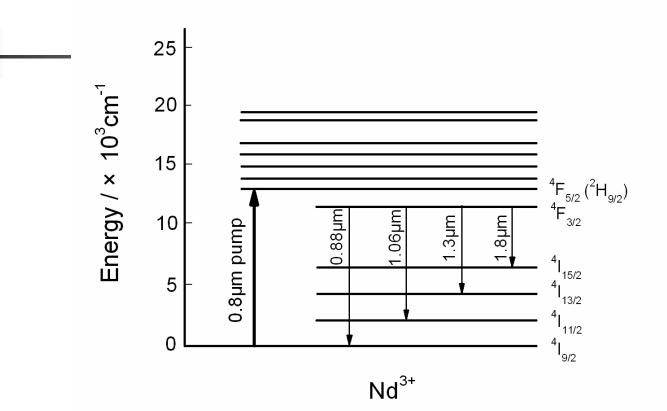


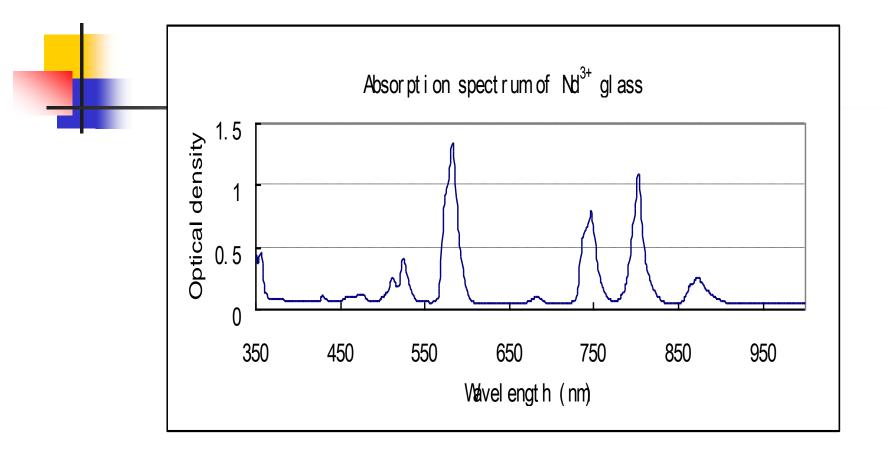


Splitting of energy level is caused by electronelectron and electron- host interaction

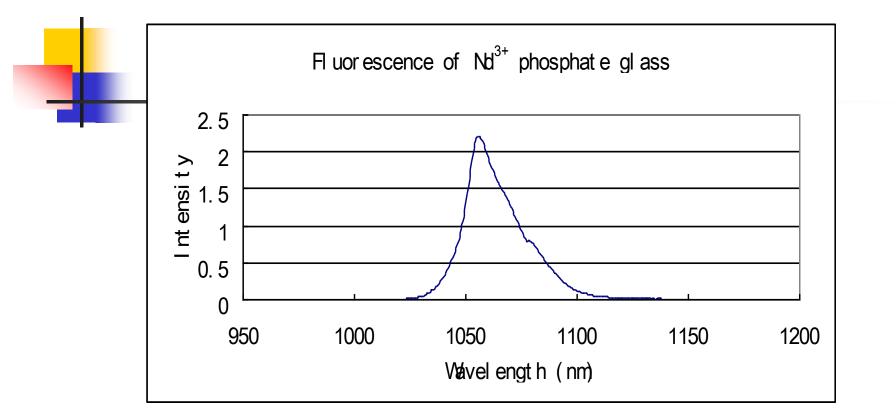
## Main parameters of laser glass

- Stimulated emission cross section;
- Effective absorption of pumping light;
- Fluorescent lifetime of up-energy level;
- Quantum efficiency.


## Precondition of laser oscillation


- Population inversion of lasing ion;
- Enough gain to overcome the loss from material and resonator;
- High stimulated emission cross section and long fluorescent lifetime;
- Small loss at lasing wavelength.

## Basic properties of Nd<sup>3+</sup> ion


- Four energy level rare earth ion with lower laser threshold;
- Efficient lasing at 1050-1060nm wavelength;
- Relative large stimulated emission cross section and short fluorescent lifetime (hundreds of microsecond).

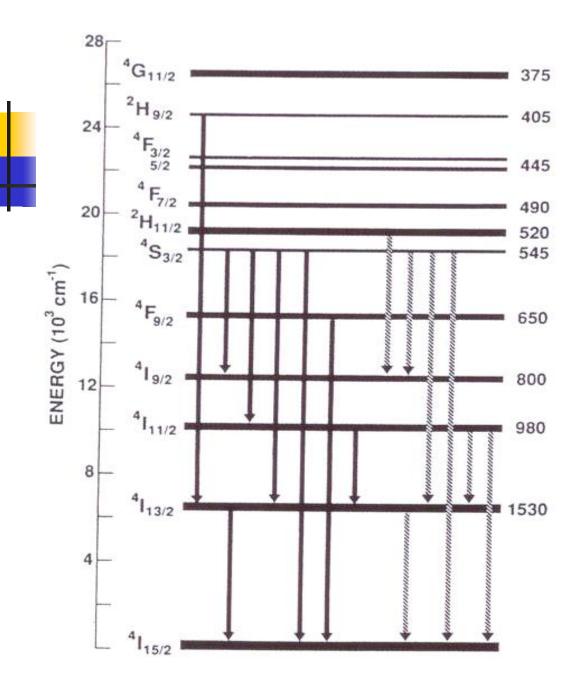
#### **Energy levels of Nd<sup>3+</sup> ion**

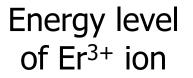


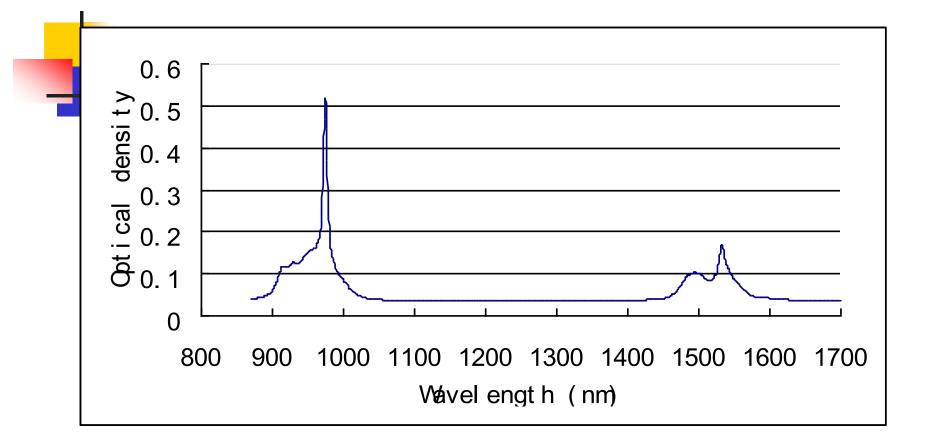


#### Absorption spectrum of Nd<sup>3+</sup> ion in glass

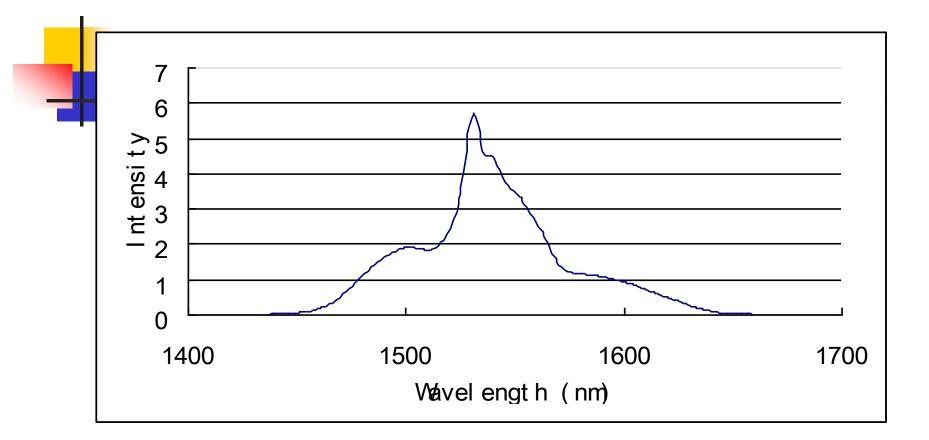



#### Main fluorescent spectrum of Nd<sup>3+</sup> ion in glass (Usually three fluorescent peaks are detected in Nd:glass)


The evaluation of spectroscopic properties of Nd<sup>3+</sup> ions


 Judd-Oflet theory is commonly used to calculate the spectroscopic properties of Nd<sup>3+</sup> ion.

## Basic properties of Er<sup>3+</sup> ion


- Three energy level with high laser threshold;
- Long fluorescent lifetime (several mini-second) and small emission cross section;
- Lasing at 1530-1550nm wavelength range;
- Small absorption at pumping wavelength, codoping with Yb<sup>3+</sup> is needed.

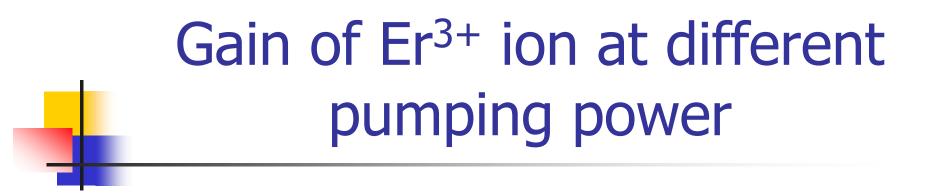






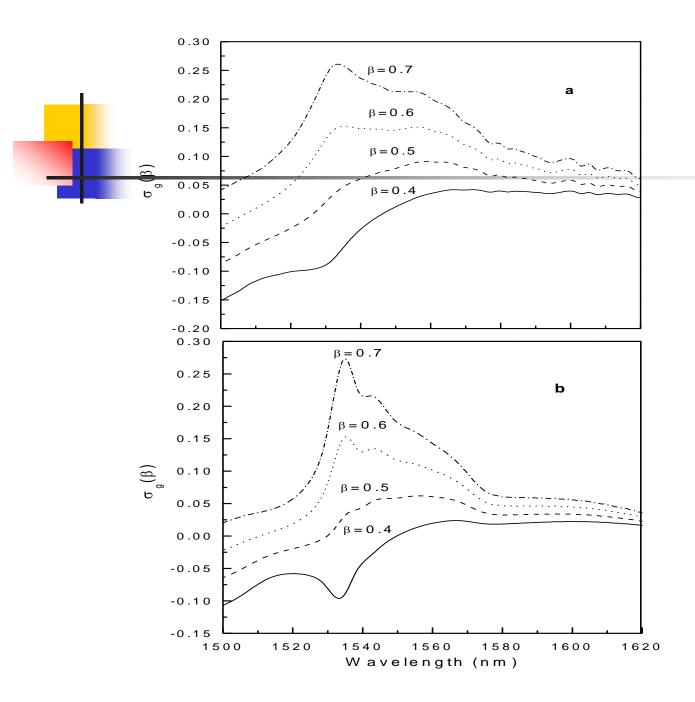
Absorption spectrum in IR range of Er<sup>3+</sup>,Yb<sup>3+</sup> co-doped phosphate glass




#### Fluorescent spectrum of Er<sup>3+</sup>,Yb<sup>3+</sup> codoped phosphate glass

The evaluation of emission cross section of Er<sup>3+</sup> ion

McCumber method


 $\sigma_{e}(\lambda) = \sigma_{a}(\lambda) \exp[(\varepsilon - hv)/kT]$ 

k : Boltzman constant ;  $\epsilon$ : transition energy from  ${}^{4}I_{15/2}$  to  ${}^{4}I_{13/2}$ 

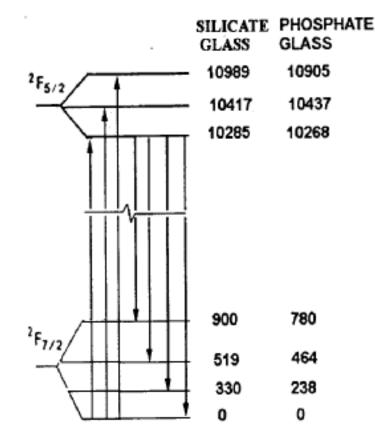


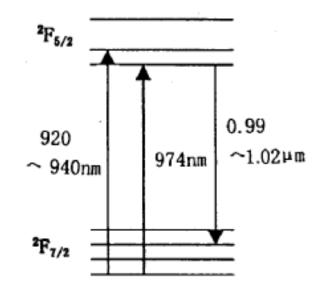
$$\sigma_{g}(\beta) = \beta \sigma_{em} - (1 - \beta) \sigma_{abs}$$

 $\beta$  is the ratio of ion concentration at upper energy level to lower energy level



a: Gain of Er<sup>3+</sup> doped fluorophosphate glass at various pump power


b: Gain of Er<sup>3+</sup> doped phosphate glass at various pump power

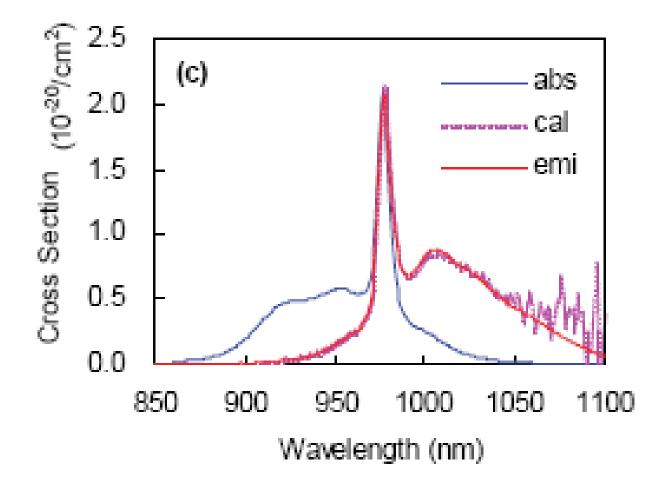

## Basic properties of Yb<sup>3+</sup> ion

- Two energy level ions;
- Large laser threshold and lower energy level population sensitive to temperature;
- Long fluorescent lifetime (0.5-2ms)
- Lasing at 1000-1200nm range;
- Large absorption at both 940nm and 980nm;
- High laser efficiency can be obtained in Yb:silica fiber.

#### Energy level of Yb<sup>3+</sup> ion in different matrix

YALO<sub>3</sub>

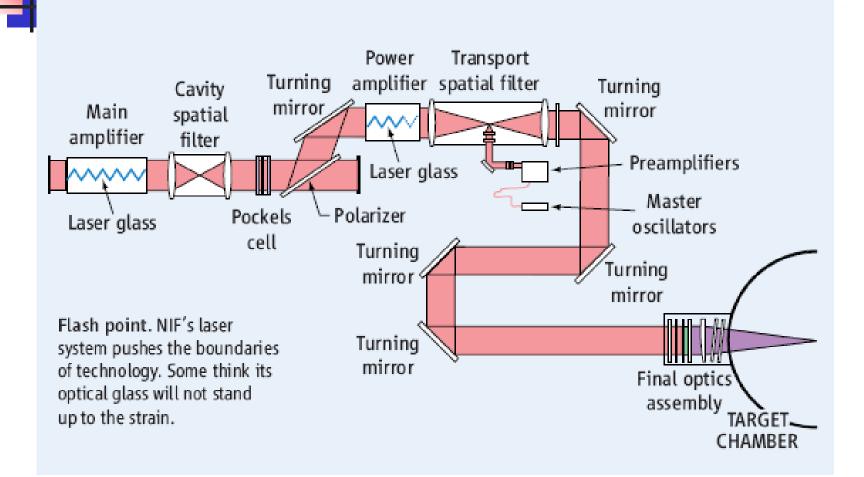





#### Stimulated emission cross section of Yb<sup>3+</sup> ion

$$\sigma_{emi}(\lambda) = \sigma_{abs}(\lambda) \frac{Z_{l}}{Z_{u}} \exp(\frac{E_{zl} - hc \lambda^{-1}}{kT})$$

ZI/Zu is partition function of lower and up levels , EzI is zero-line energy.


## Absorption and emission cross sections of Yb<sup>3+</sup> doped bismuth glass



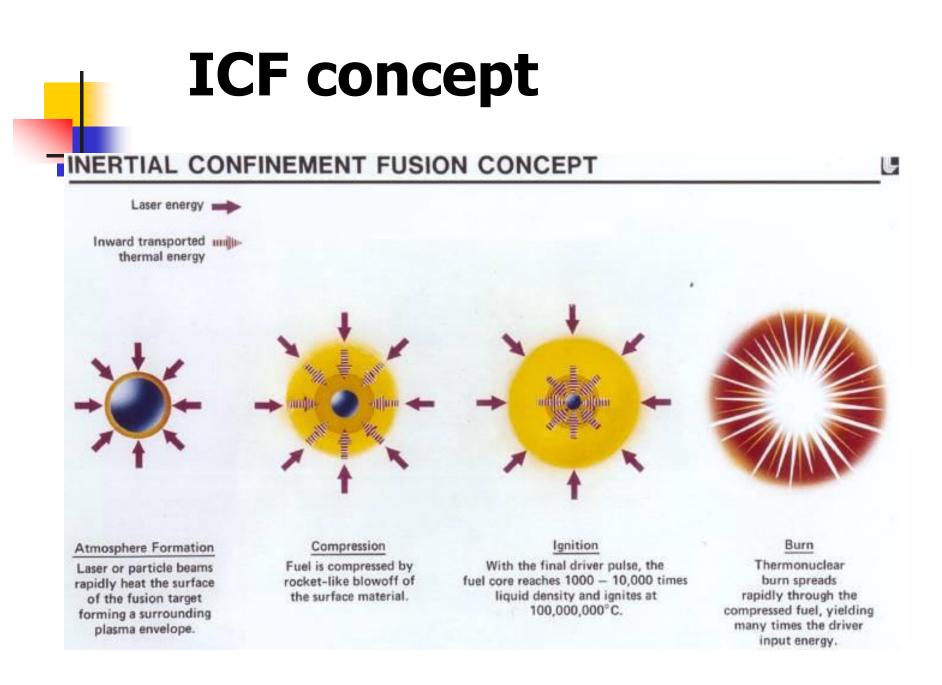
2 High power Nd:phosphate laser glass and its application

- Nd:phosphate glass is a widely used high power laser glass since its application in early 1980s.
- Nd:phosphate laser glass is mainly used as amplifier material in high peak power laser facility.

#### Laser system in NIF, US



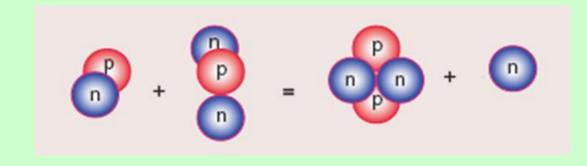
The advantages of phosphate glass as laser matrix


- High rare earth ion solubility;
- Large stimulated emission cross section;
- Medium phonon energy;
- Good thermal optical property;
- Lower nonlinear refractive index;
- Lower contents of Pt inclusions.

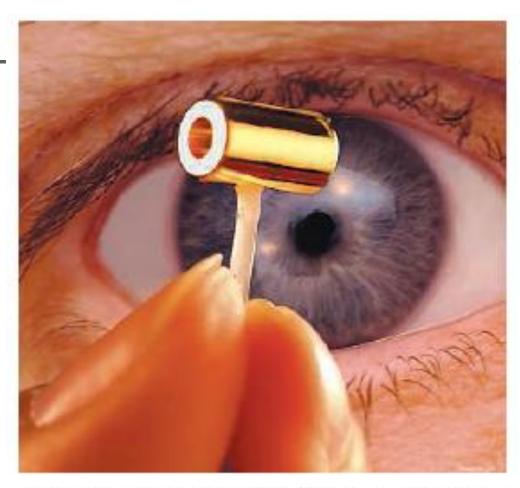
Disadvantages of phosphate glass as laser matrix

- Poor chemical and mechanical properties;
- Poor fabrication property.

## Mission of large high power laser facility


- Inertial confinement fusion for future nuclear energy generation;
- Basic scientific researches on astrophysics and plasma physics.




## The nuclear fusion reaction

 $^{2}D_{1}+^{3}T_{1}\rightarrow^{4}He_{2}+^{1}n_{0}+17.6MeV$ 

#### D and T are isotopes of hydrogen, He is helium nuclei, n is neutron<sub>o</sub>



#### Target of 192 beam laser in NIF, US



Pin point. All 192 beams must shine into the ends of this gold cylinder, which encloses the target.

#### By 1980, multibeams, multiterawatts 1um laser facilities built for ICF research



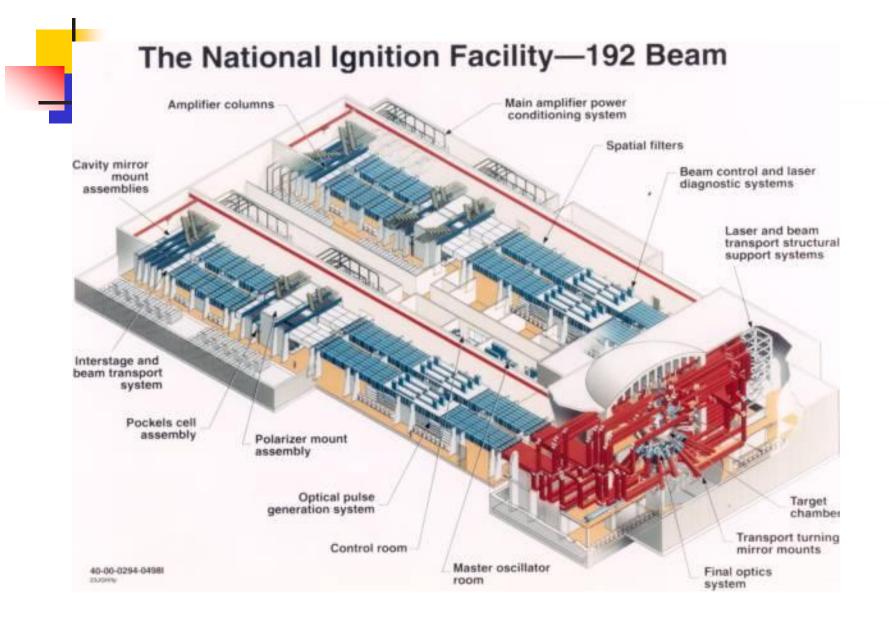
Shiva – 20 beams, 10 kJ, 20 TW (LLNL 1977)



OMEGA – 24 beams, 4 kJ, 15 TW (LLE 1980)

#### Nova facility in LLNL built with Nd:phosphate laser glass

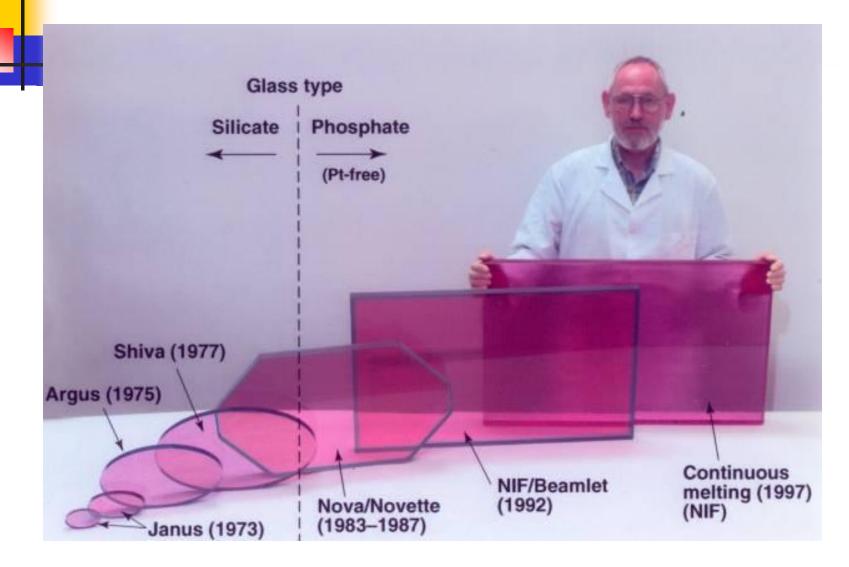
Nova laser at LLNL – 10 beams, -30 kJ<sub>UV</sub> (1986–1999)




#### OMEGA EP finished in 2008 with 60 laser beams



OMEGA EP: Completed 2008, first user experiments in Q1 FY09


#### NIF facility in LLNL finished in last March



#### **ICF** facilities bulit with Nd:laser glass

| Finished          | Facility                     | Glass used   | Beams | Nd:glass volume |
|-------------------|------------------------------|--------------|-------|-----------------|
|                   | Omega-EP in<br>US            | LHG-8,       | 60    | 15L             |
|                   | NIF in US                    | LHG-8,LG-770 | 192   | 15L             |
|                   | Shen Guang II in<br>China    | N21,N31      | 8+1   | 3-7L            |
|                   | Shen Guang III<br>proto-type | N31          | 8     | 7.6L            |
|                   | Firex in Japan               | LHG-8        | 24    | 15L             |
| Under<br>building | Shen Guang III               | N31          | 48    | 15L             |
|                   | L M J in France              | LHG-8,LG-770 | 240?  | 15L             |

## **The development of Nd:glass**



## The main requirements on Nd:glass in high peak power laser facility

- High stimulated emission cross section and long fluorescent lifetime----high gain
- Efficient stored energy
- High energy extraction efficiency
- High laser damege threshold, lower Pt inclusions,
- Small nonlinear refractive index;
- Excellent optical homogenity (2x10<sup>-6</sup>) and small wavefront distortion.

## FOM for high peak power Nd:glass

 $\Delta \lambda_{abs} (\tau_0 Q) \sigma_{em} \eta_{ex}$ FOM laser  $n_2$ 

## Relation between absorption peak and line strength

Relation between integrated absorption cross section and  $S_{JJ'}$  according to J-O theory

$$\int kd\lambda = \frac{8\pi^{3}e^{2}\lambda N_{0}}{3nch(2J+1)} \times \frac{(n^{2}+2)^{2}}{9} \times S_{JJ},$$

Line strength calculation

$$S_{JJ'} = \sum_{t=2,4,6} \Omega_{t} \left| \left\langle 4 f^{N} (SL) J \right| U^{(\lambda)} \left\| 4 f^{N} (S'L') J' \right\rangle \right|^{2}$$

 $\Omega_t$  is determined by glass composition , line strength  $S_{JJ'}$  can be calculated from measured absorption spectrum, density and refractive index of glass

### Spontaneous emission probability

Spontaneous emission probability from manifold | (S',L')J'> to manifold | (S,L)J>

$$A_{J'J} = \frac{64 \pi^2 e^2 n}{3 h (2 J' + 1) \lambda^3} \times \frac{(n^2 + 2)}{9} \times S_{JJ'}$$

## Effective fluorescent bandwidth

$$\Delta \lambda_{eff} = \int \frac{I(\lambda) d\lambda}{I(\lambda_p)}$$

## The stimulated emission cross section

 It is most important parameter of laser material. Its peak value can be calculated from the following formula for Nd<sup>3+</sup>:

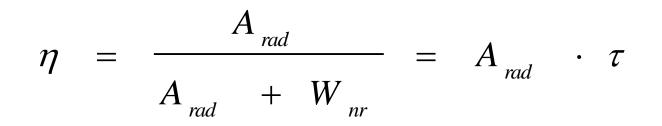
$$\sigma = \frac{\lambda^4}{8 \pi c h^3} \times \frac{A_{JJ'}}{\Delta \lambda_{eff}}$$

A simplified method to calculate stimulated emission cross section

Stokowski proposed a simpified method

•  $\sigma = 18.9 [(n^2+2)^2/9n] S_{750}/\Delta \lambda_{eff}$ 




**Measured fluorescent lifetime:** 

$$\tau = \frac{1}{(A_{rad} + W_{nr})}$$

## Relation between fluorescent lifetime and Nd<sup>3+</sup> ion concentration

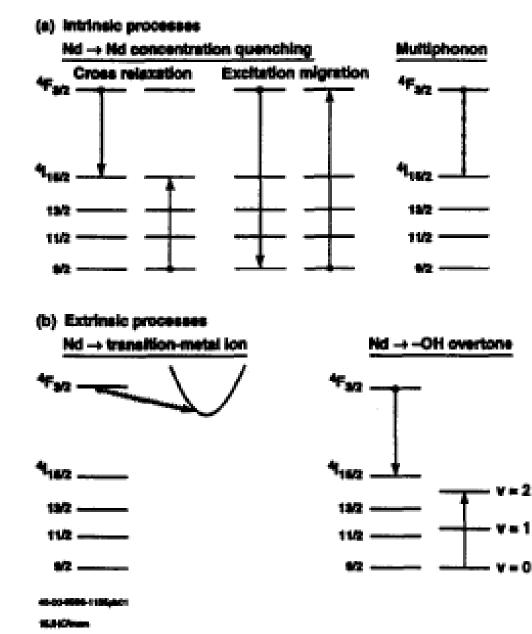
 $\tau = \tau_0 / (1 + (N/Q)^2)$ 





# Radiative and non-radiative transitions

- Transition from high energy level to low energy level includes radiative and nonradiative transitions.
- Fluorescence occurs in the former, while heat effect is accompanied in the non-radiative transitions.


## Non-radiative transition

- There are three main factors which affect non-radiative transition:
  - Rare earth ion interaction;
  - The interaction between rare earth ion and impurities (such as OH, transition metal ions, other rare earth ions);
  - The phonon energy of matrix.



#### **Total nonradiative decay rate**

$$W_{nr} = W_{mp} + W_{Nd} + W_{OH} + \sum_{i=1}^{n} W_{TM_{i}} + \sum_{j=1}^{m} W_{RE_{j}}$$



Nonradiative transitions of Nd<sup>3+</sup> ion



## Stored energy of Nd:glass

$$E_g = h v N$$

N is inversion density of Nd-ion. Eg is usually 0.25J/cm<sup>3</sup>.

## Saturated fluence of Nd:glass

 $F_{sat} = h v_1 / \sigma$ 

It is usually 5J/cm<sup>2</sup>.

## Energy extraction efficiency

$$\eta_{ex} = \sigma_{em} / \sigma_{gs}$$

σgs is corss section calculated from measured gain saturation , σem is spectroscopically determined cross section.



$$G_0 = \exp(z[\sigma N - \alpha])$$

Alpha is transmission loss coefficient, Z is length of gain medium.

#### Nonlinear refractive index and B factor

Cumulative nonlinear phase retardation: B factor

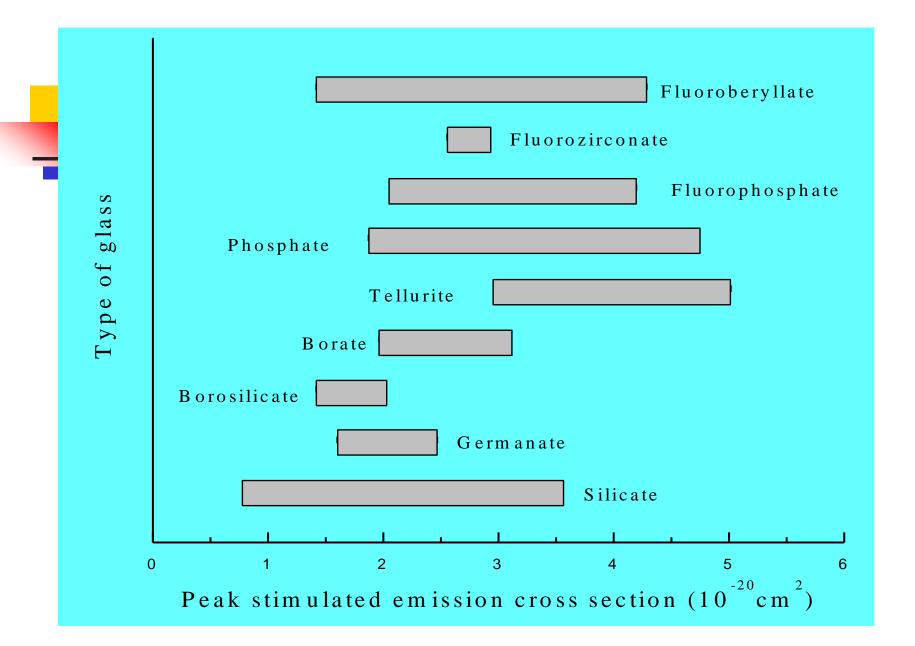
Nonlinear refractive index r:

$$B = \frac{2\pi}{\lambda} \int \gamma I dZ$$

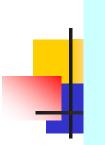
$$\gamma = \frac{40 \pi n_2}{nc}$$

Nonlinear refractive index  $n_2$  in  $10^{-13}$ esu :

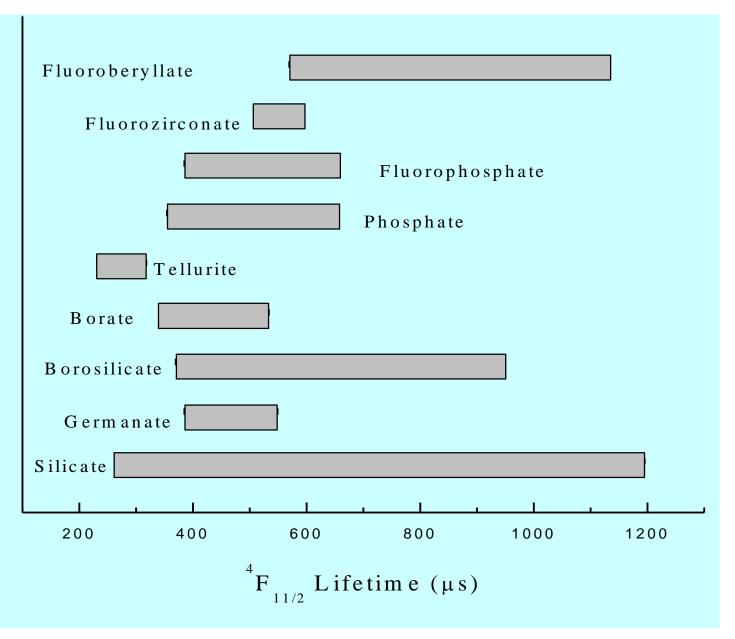
$$n_{2} = \frac{68 (n_{d}^{2} + 2)^{2} (n_{d} - 1)}{v \{ 1.517 + [v (n_{d}^{2} + 2)(n_{d} + 1)] / 6n_{d} \}^{1/2}}$$


## **Thermal optical property**

$$W = \frac{dn}{dT} + (n-1)\alpha$$


## Relation between glass composition and laser properties for Nd doping

## **Composition research**


- Most of composition research was done in the early period of laser glass research.
- Commercial laser glasses are metaphosphate glass with P:O=1:3.



Fluoroberyllate Fluorozirconate Fluorophosphate glass Phosphate Type of Tellurite Borate Borosilicate Germanate Silicate 20 25 10 15 30 35 40 45 Emission bandwidth, FWHM (nm)







## Nd:glass for high power laser application

- LHG-8 from Hoya ;
- LG-750,LG-760,LG-770 from Schott;
- Q88 from Kigre in US;
- N21 and N31 glasses from SIOM, China .

Companies and Institute who develop high power laser glasses

- Hoya company, Japan;
- Schott company, Germany;
- Kigre Company in USA;
- SIOM in China

|                                                            | le HPP glasses in common use on . |         |         |         |        |        |
|------------------------------------------------------------|-----------------------------------|---------|---------|---------|--------|--------|
| Glass Manufacturer                                         |                                   | Hoya    |         | Schott  |        | Kigre  |
| Glass Properties                                           | Symbol                            | LHG-80  | LHG-8   | LG-770  | LG-750 | Q88    |
| Optical                                                    |                                   |         |         |         |        |        |
| refractive index                                           |                                   |         |         |         |        |        |
| @ 587.3 nm                                                 | n <sub>d</sub>                    | 1.54291 | 1.52962 | 1.50674 |        | 1.5449 |
| @ 1053 nm                                                  | n <sub>i</sub>                    | 1.53289 | 1.52005 | 1.49908 | 1.516  | 1.5363 |
| non-linear refractive index                                |                                   |         |         |         |        |        |
| $(10^{-13} \text{ esu})$                                   | n <sub>2</sub>                    | 1.24    | 1.12    | 1.02    | 1.08   | 1.14   |
| (10 <sup>-20</sup> m <sup>2</sup> /W)                      | γ                                 | 3.36    | 3.08    | 2.78    | 2.98   | 3.11   |
| Abbe number                                                | v                                 | 64.7    | 66.5    | 68.5    | 68.2   | 64.8   |
| Temp-coeff. refract. index (10%/K)                         | dn/dT                             | -3.8    | -5.3    | -4.7    | -5.1   | -0.5   |
| Temp-coeff. optical path (10 <sup>-6</sup> /K)             | δ                                 | 1.8     | 0.6     | 1.2     | 0.8    | 2.7    |
| Laser*                                                     |                                   |         |         |         |        |        |
| emission cross-section(10 <sup>-20</sup> cm <sup>2</sup> ) | $\sigma_{em}$                     | 4.2     | 3.6     | 3.9     | 3.7    | 4.0    |
| saturation fluence (J/cm <sup>2</sup> )                    | Fast                              | 4.5     | 5.3     | 4.8     | 5.1    | 4.7    |
| radiative lifetime (zero-Nd) (µs)                          | τ。                                | 337     | 365     | 372     | 383    | 326    |
| Judd-Ofelt radiative lifetime (µs)                         | τ,                                | 327     | 351     | 350     | 367    | 326    |
| Judd-Ofelt parameters (10 <sup>-20</sup> cm <sup>2</sup> ) | $\Omega_2$                        | -       | 4.4     | 4.3     | 4.6    | 3.3    |
|                                                            | $\Omega_4$                        |         | 5.1     | 5.0     | 4.8    | 5.1    |
|                                                            | $\Omega_{6}$                      | -       | 5.6     | 5.6     | 5.6    | 5.6    |
| emission band width (nm)                                   | $\Delta \lambda_{eff}$            | 23.9    | 26.5    | 25.4    | 25.3   | 21.9   |
| conc. quenching factor (cm <sup>-3</sup> ) <sup>c</sup>    | Q                                 | 10.1    | 8.4     | 8.8     | 7.4    | 6.6    |
| fluorescence peak (nm)                                     | $\lambda_L$                       | 1054    | 1054    | 1053    | 1053.5 | 1054   |
| Thermal                                                    |                                   |         |         |         |        |        |
| thermal conduct., (W/mK)                                   | k                                 | 0.59    | 0.58    | 0.57    | 0.60   | 0.84   |
| thermal diffusivity(10 <sup>-7</sup> m <sup>2</sup> /s)    | α                                 | 3.2     | 2.7     | 2.9     | 2.9    | -      |
| specific heat, (J/gK)                                      | C.                                | 0.63    | 0.75    | 0.77    | 0.72   | 0.81   |
| Coeff. thermal expan.*(10 <sup>-7</sup> /K)                | α,                                | 130     | 127     | 135     | 132    | 104    |
| Glass transition temp (°C)                                 | Т.                                | 402     | 485     | 460     | 450    | 367    |
| Mechanical                                                 |                                   |         |         |         |        |        |
| density (g/cm <sup>3</sup> )                               | ρ                                 | 2.92    | 2.83    | 2.59    | 2.83   | 2.71   |
| Poisson's ratio                                            | μ                                 | 0.27    | 0.26    | 0.25    | 0.26   | 0.24   |
| Fracture toughness (MPa m <sup>0.5</sup> )                 | K <sub>IC</sub>                   | 0.46    | 0.51    | 0.48    | 0.48   | _      |
| Hardness (GPa)                                             | H                                 | 3.35    | 3.43    | 3.58    | 2.85   | -      |
| Young's modulus (GPa)                                      | Е                                 | 50.0    | 50.1    | 47.3    | 50.1   | 69.8   |
| Stress optic coeff.(Pa)                                    | AB                                | 1.77    | 1.93    | 2.2     | 1.80   | 2.07   |

Table I: Properties of commercially available HPP glasses in common use on ICF lasers.

#### Properties of Nd:phosphate glass from SIOM

| Properties                                                          | N21              | N31     |
|---------------------------------------------------------------------|------------------|---------|
| Laser properties                                                    |                  |         |
| Nd <sub>2</sub> O <sub>3</sub> (wt%)                                | 2.2              | 2.2     |
| Nd <sup>3+</sup> ion conc. (10 <sup>20</sup> ions/cm <sup>3</sup> ) | 2.68             | 2.26    |
| $\sigma_{\rm em}(10^{-20} {\rm cm}^2)$                              | 3.4              | 3.8     |
| Fluorescent lifetime(µs)                                            | 330              | 340±10  |
| FWHM(nm)                                                            | 24.0             | 20.1    |
| Laser wavelength(nm)                                                | 1053             | 1053    |
| Optical properties                                                  |                  |         |
| n <sub>d</sub>                                                      | 1. <b>5758</b>   | 1.5357  |
| n                                                                   | 1.5652           | 1.5280  |
| n₂(10 <sup>-ī3</sup> esu)                                           | 1. <b>3</b> ±0.1 | 1.1±0.1 |
| Abbe No.                                                            | 65.2             | 66.2    |
| dn/dT(10 <sup>-6</sup> /°C)(20-100°C)                               | -4.2             | -4.3    |
| ds/dT(10 <sup>-6</sup> /°C)(20-100°C)                               | 1.9              | 1.4     |
| Physical properties                                                 |                  |         |
| density(g/cm <sup>3</sup> )                                         | 3.40             | 2.83    |
| E(kg/mm <sup>2</sup> )                                              | 5640             | 5270    |
| V                                                                   | 0.27             | 0.27    |
| Knoop hardness(kg/cm <sup>2</sup> )                                 | 650              | 330     |

#### **Properties of N21 and N31 glasses from SIOM (continued)**

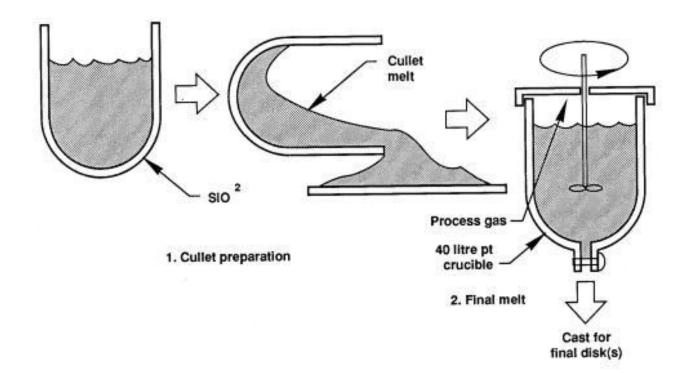
| Properties                                                                                                                                                                    | N21                                            | N31                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------------------------------------|
| Thermal propertie<br>T <sub>g</sub> (°C)<br>α(10 <sup>-6</sup> /°C)(20-100°C<br>α(10 <sup>-6</sup> /°C)(100-300°C<br>Κ(W/m.K)<br>C <sub>p</sub> (25°C) (J/cm <sup>3</sup> .°C | <b>C)</b> 500<br>110<br><b>C)</b> 120<br>0.553 | 450<br>107<br>127<br>0.558<br>0.75 |
| Chemical durabilit<br>D <sub>w</sub> (H <sub>2</sub> O <sub>,</sub> 100°C,1hr,wt lo<br>D <sub>A</sub> (HNO <sub>3</sub> ,pH2.2,100°C<br>Wt. Loss%)                            | <b>0.06</b>                                    | 0.09<br>0.40                       |

3 Fabrication technology of Nd:phosphate laser glass

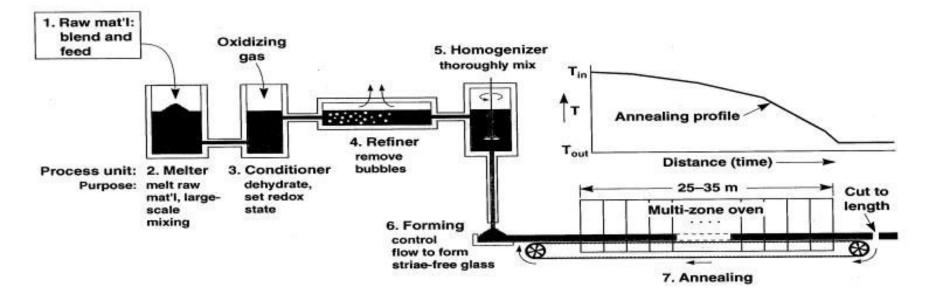
- Fabrication technology is very important to laser glass because many properties of Nd:glass is concerning with fabrication processing
- By now there are two melting technologies of Nd:phosphate laser glass

✓ Pot melting

Continuous melting


## **Properties concerning to fabrication processing**

- Fluorescent lifetime ;
- Optical loss at laser wavelength;
- Optical quality ;
- Bubbles;
- Platinum inclusions;
- Absorption at 400nm;
- Residual stress


#### Advantages of continuous melting

- Lower cost of laser glass;
- High efficiency of production;
- Less change of properties among different glass slabs;
- Better optical homogenity;
- Less micro-crack on glass surface after annealing.

#### Pot melting process of laser glass



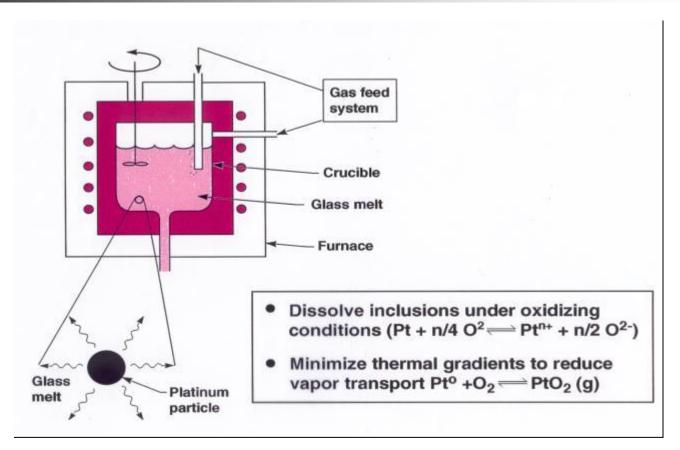
#### Continuous melting process of laser glass



#### Nd:glass from continuous melting in Hoya



Key technologies of Nd:phosphate glass fabrication


- Dehydroxylation;
- Elimination of Pt inclusions
- Forming
- Cladding with Cu ion doped phosphate glass.

#### Mechanism of dehydroxylation

$$CCl_{4} + 2H_{2}O \leftrightarrow CO_{2} + 4HCl$$

$$4 \begin{pmatrix} -\overset{\parallel}{P} - OH \\ \dot{O} \end{pmatrix} + CCl_{4} \leftrightarrow 2 \begin{pmatrix} -\overset{\parallel}{P} - O - \overset{\parallel}{P} \\ \dot{O} \end{pmatrix} + 4HCl + CO_{2}$$

#### Mechanism of eliminating Pt inclusions



## Forming

- Forming is very important for both pot melting and continuous melting.
- It affects the optical homogenity especially in forming large size glass.

# **Cladding of laser glass**

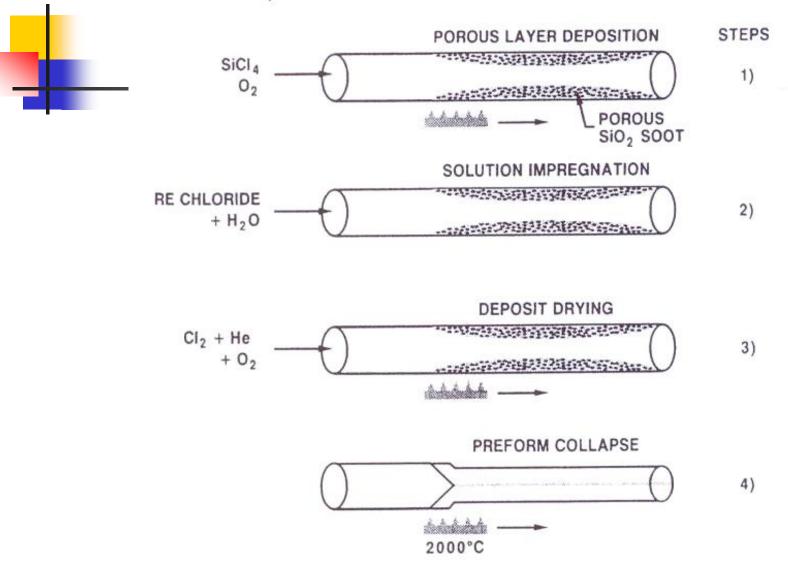
- Cladding is an effective method to remove amplified spontaneous emission and get high gain in Nd:glass.
- Residual reflection in cladding surface less than 0.1% is required.

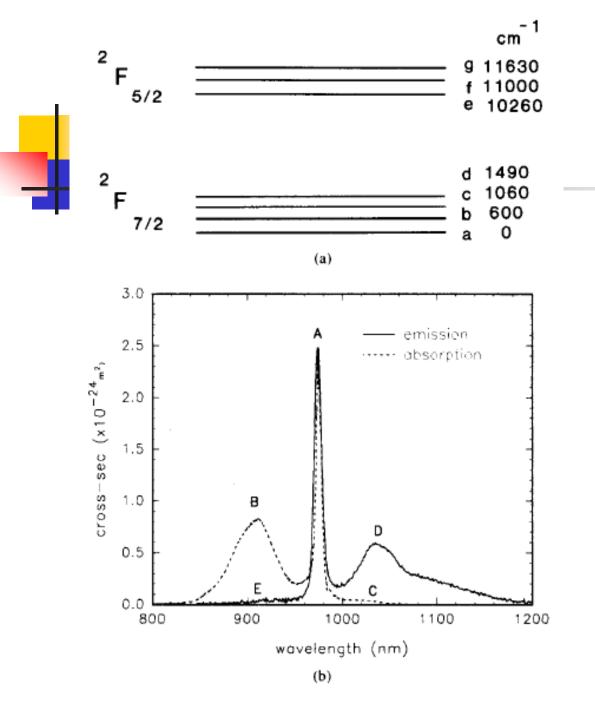
#### Nd:phosphate glass disk after cladding





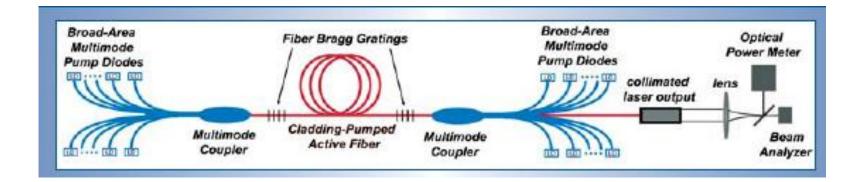
### 4 High power fiber laser


- Yb:silica is a widely used high power fiber laser material because of its high quantum efficiency.
- Up to now several thousands watt power has been achieved in a single Yb:silica fiber.


#### Advantage of silica fiber matrix

- Its extreme low loss is the main advantage of silica fiber.
- Good thermal property and mechanical strength of silica.

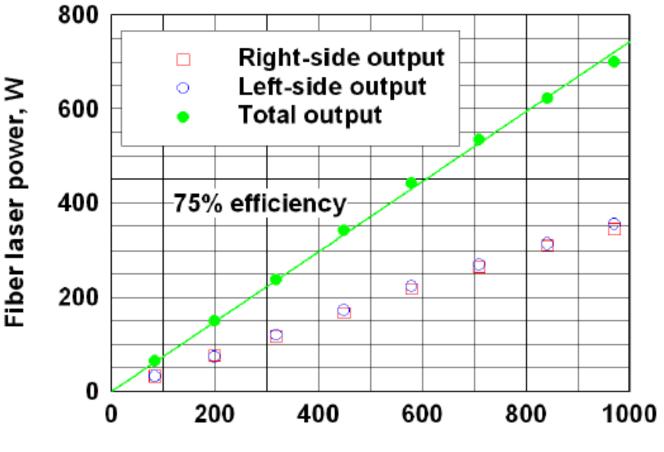
#### **Fabrication of Yb:silica fiber**


 MCVD and solution doping method are used to prepare Yb doped silica preform and then fiber is drawn from the preform. Rare Earth Doped Fiber Fabrication





(a)Energy diagram of Yb<sup>3+</sup> in silica
(b)Absorption and emission cross section of Yb<sup>3+</sup> in silica


#### Structure of fiber laser



#### Spectra and output power of fiber lasers by 2004



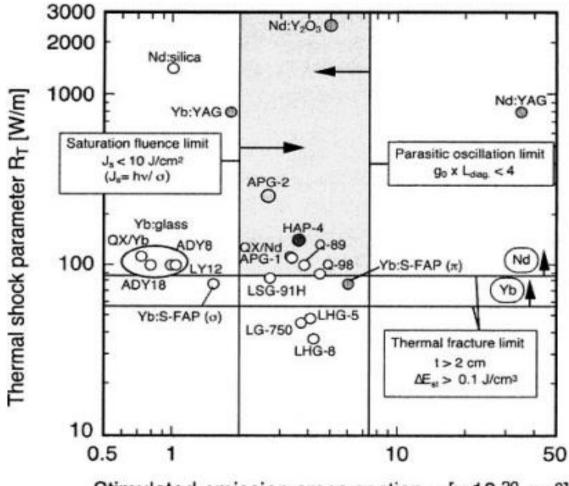
# Output and input relation of a single mode Yb:silica fiber in 2003



Estimated coupled power, W

**5 Outlook on next generation high power laser material** 

 Laser Fusion Energy (LFE) research project aimed on laser power plant is proposed by US and European scientists in recent years.


#### LFE requirements on laser material

- Work in several Hz repetition rate (up to 10Hz),
- High efficiency, 20-30%;
- Good thermal properties;
- Can be produced in large size.


Possible next generation laser material for LFE

- Laser ceramics?
- Nd<sup>3+</sup> or Yb<sup>3+</sup> doped SiO<sub>2</sub> bulk?
- Multi-component glass?
- Special optical fiber?
- Yb<sup>3+</sup> doping?

#### Relation between thermal shock parameter and stimulated emission cross section



Stimulated emission cross section of [x 10-20 cm2]



# Thanks for your attention!

#### Main references

- M.J.F.Digonnet, Rare earth doped fiber lasers and amplifiers, 1993 edition;
- Fusion's great bright hope, Science, 2009, Vol.324, p.326;
- J.H.Campbell et al, J.Non-Cryst.Solids, 2000, Vol.263&264, p.342;
- K.Lu, et al, J.Appl.Phys. 2002, Vol.91,No.2,p.576
- J.H.Campbell, LLNL research report, UCRL-JC-124244