US-China Winter school, Hangzhou, Jan. 12, 2010

Crystallization of RE Ions Doped Transparent Glass Ceramics

Yuansheng Wang

Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences

1, General Crystallization Process

Crystallization may take place in solution or amorphous system

Crystallization includes two stages

Nucleation rate < Nucleus growth rate - Less grain Large size

Nucleation rate > Nucleus growth rate - Small size

Schematic illustration of nucleation + growth of crystal

Component ions distribute randomly in amorphous matrix

Component ions aggregate to form clusters

Some clusters grow to form ordered nucleus of critical size

Nucleus grow to form grain through diffusions of ions

Grains grow until component ions are exhausted

Further heating Second grain growth (Ostwald Ripening)

Examples of impurity

solid solution Similar ionic radius, same crystalline structure

2. Crystallization of Glass Ceramics

Applications of Luminescent Materials (Powder & Bulk)

Fluorescent Lamp

Solid State Laser

Optical Fiber & Amplifier

Novel luminescent bulk material: Rare-earth Ions Doped Transparent Oxyfluoride Glass Ceramics

Combines both advantages from fluoride crystal and oxide glass

Material's structure determines its performances

What is favorable microstructure for TGC?

To achieve: High transparency + Efficient light emission

- Homogenous oxide glass matrix
- Mono-dispersed fluoride phase
- Spherical nanocrystals (< 20 nm)
- RE ions partitioned in crystal lattices

What we need?

RE ions doped transparent oxyfluoride glass ceramic: A composite material of low phonon energy fluoride nanocrystals incorporated with RE ions embedding among an oxide glassy matrix

Why fluoride crystal?

Fluoride phase has low phonon energy, which reduces the multi-phonon non-radiative de-excitation of RE ions, results in a high emission efficiency

Why oxide glass matrix?

Most oxide glasses exhibit high mechanical strength and chemical stability, suitable for practical industry applications

Why nanocrystals?

Much smaller size of the precipitated fluoride crystals than the wavelength of the visible and infrared light (or the matching of the refractive index between nano-crystals and glassy host) ensures the high transparency of glass ceramic How to achieve desired microstructure: controlled nucleation and growth of nanocrystals from precursor glass

Key points:

- Appropriate composition of precursor glass (several components),
- Revealing crystallization kinetics (determine E, n),
- Setting crystallization (heating) temperature (T_c around T_p),
- RE acting as nucleation agent (usually, not necessary)

Preparation of precursor glass

Crystallization Kinetics of Glass

Crystallization = Nucleation + Grain Growth

- **x**: crystallized volume fraction at time t;
- **K**: a function of temperature T, is related to the nucleation and growth rate;
- **R**: gas constant;
- *n*: Avrami exponent which reflects crystallization mechanism;
- E_a : apparent activation energy for crystallization;

Based on JMA and Arrhenius equations

Apparent activation energy Ea and Avrami exponent n, two most important kinetic parameters describing crystallization mechanism, can be determined from non-isothermal DSC/DTA measurements

using Chen's or Ozawa's equations.

α: heating rate;
 T_p: crystallization temperature at a given heating rate;
 x: crystallized volume fraction at a fixed temperature T_x with heating rate α.

r is the correlative coefficient of least-squares fitting

Various kinds of crystallization mechanism	s n value			
(a) polymorphous crystallization, interface controlled growth				
increasing nucleation rate	>4			
constant nucleation rate	4			
decreasing nucleation rate	3-4			
zero nucleation rate	3			
interfacial nucleation (saturated)	1			
grain edge nucleation (saturated)	2			
(b) diffusion controlled grain growth				
increasing nucleation rate	> 2.5			
constant nucleation rate	2.5			
decreasing nucleation rate	1.5-2.5			
zero nucleation rate	1.5			
growth from preexisted precursors	1-1.5			
thickening of large plates	0.5			
film growth	1			
threads growth	2			

(determined by E_a value)

Several examples of crystallization for fluoride nanocrystals in glasses

CaF₂:Er contained GC

 $\begin{array}{c} \text{Heating induced precipitation} \\ \text{of } CaF_2 \text{ nanocrystals} \end{array}$

Using Debby-Scherrer formula, mean sizes of CaF_2 crystals were evaluated to be 5, 9, 15 and 38 nm for b,c, d, and e samples

crystllization mechanism of CaF₂

Sample	Т _р (°С)	E _a (kJ/mol)				
		Chen's method	Ozawa's method	n	n	
x=0.0	647	299	314		Crystallization was a	
x=0.1	633			1.5~1.7	1.5~1.7	diffusion-controlled
x=0.5	621	314	329			dimonsions with
x=1.0	616				decreasing nucleation	
x=2.0	608	332	347		rate	

- This mechanism implies: local composition changes during crystallization, and crystal growth rate depends exponentially on heating temperature.
- Accordingly, controllable crystallization could be conducted mainly by adjusting heating temperature and (or) modifying composition of precursor glass.

Where were Er ions located ?

EDS spectra with nano-sized probe from: (a) glass matrix, and (b) an / individual nanocrystal, of 2 mol% Er doped glass ceramic

Er ions aggregated in CaF₂ nanocrystals (lattices and surfaces)

After Er-doping, CaF₂ crystal size reduced, while its number density increased.

Crystallization Temperature T_p decreased with increasing of Er content x Some of Er³⁺ ions segregated on crystal surfaces which slightly enhanced the crystallization activation energy to retard the crystal growth by hindering the atomic diffusions.

(a) Upconversion emission, and (b) near-infrared emission spectra of glass ceramics under 980 nm excitation

BaF₂:Er contained GC

NaYF₄:Nd contained GC

(a) Nd-free; (b) 1% Nd; (c) 3% Nd

- Kinetic studies reveal the crystallization mechanism being a diffusion-controlled growth of particles with decreasing nucleation rate.
- Nd³⁺ ions acted as nucleation agent and promoted NaYF₄ crystallization.
- Expansion of cubic NaYF₄ lattice with increasing of Nd³⁺ content indicates incorporation of Nd³⁺ into NaYF₄ lattice by substituting Y³⁺

YF₃:Nd contained GC

General nanocrystallization of LnF_3 (Ln = La–Lu,Y) in SiO₂–Al₂O₃–NaF–LnF₃ glasses

PbF₂:Er contained GC

What were differences?

PbF₂ crystallized during melt-quenching ,
Nanocrystals aggregated together ,
Congeries size increased with Er doping ,
Grains grown through Ostwald Ripening

as-quenched 500°C heat treated (a) 0 mol% Er, (b) 1 mol% Er, (c) 2 mol% Er and (d) 4 mol% Er

incorporation of small grains to a bigger one

 $Yb_2O_3 - Y_2O_3 - SiO_2$ GC

What were differences?

Phase separation determined nucleation and crystallization

▼ cristobalite

α - Y₂Si₂O₇

1150°C 4h 1050°C 2h

900°C 2h

500°C 2h

60

(a)

(h)

Various glass ceramic samples

(a) $SiO_2-Al_2O_3-Na_2O-LaF_3$; (b) $SiO_2-Al_2O_3-Na_2O-LaF_3$:Er; (c) $SiO_2-Al_2O_3-CaO-NaF-CaF_2$:Er; (d) $SiO_2-Al_2O_3-CaO-NaF-CaF_2$:Er/Yb

Mixed crystal or solid solution

