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Ion Conduction in Glass
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Fast Ion Conduction in Glass
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Li-ion Battery: The Most Common Li battery

C6 is a common anode 
t i l f Li i b tt i

e-

material for Li-ion batteries

The maximum capacity of 
graphite (LiC ): ~350Ah/kg

Li+e-

e-

graphite (LiC6): ~350Ah/kg

Li: ~ 4000 Ah/kg
Li+

Li+e-

e-

e-

-

Li C6 Li CoOLi+ conducting 
C6 has good cycle-life, 

e e-

LixC6 Li1-xCoO2
co duct g

electrolyte
Anode:      LixC6 xLi+ + xe- + C6

Cathode: Li CoO + xLi+ + xe- LiCoO

But low capacity for new 
portable devices

Cathode:    Li1-xCoO2 + xLi+ + xe LiCoO2
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Anode and Cathode Combinations Determine the Energy 
Density of Lithium Batteries

Cathodes

Density of Lithium Batteries

Anodes

J.M. Tarascon, M. Armand, Nature, 414, 15 (2001) 359
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Lithium Dendrite Formation in Li ion Batteries

Li metal

Non-epitaxial deposition of lithium after each cycle leads to the growth of 
uneven “fingers” or dendrites of lithiumuneven fingers  or dendrites of lithium

Internal dendrites result in short circuits of the battery – heat and fire
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Fast Ion Conduction in Glass

 Can highly conducting glasses be used in Lithium g y g g
batteries
 To increase safety?

 By mitigating lithium dendrite formation

 To increase energy density?
 By enabling lithium metal (or similar high activity) anodes By enabling lithium metal (or similar high activity) anodes

 To reduce cost?
 By simplifying design and using lower cost materials
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Fast Ion (Li+) Conducting Sulfide Glasses-
Ioni Ch l ogenide Gl ssesIonic Chalcogenide Glasses
Charge Compensated Chalcogenide Glasses

 Typical glass compositions
 Lithium salt + + glass former + additives

Lithium modifierLithium modifier

Mobile cations Glass structure Chemical/mechanical/Mobile cations                   Glass structure     Chemical/mechanical/
electrochemical durability

 LiI + Li2S + SiS2 B2S3 GeS2 LiI + Li2S + SiS2, B2S3, GeS2 …
 LiI + Li2S + GeS2+ Ga2S3, La2S3, ZrS2…
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Example: Structures of  xLi2S +(1-x)GeS2 Glasses
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Arrhenius Ionic Conductivity
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Raman Spectra of  NaI doped glasses
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Relation of glass structure to ionic conduction

xNa2O + (1-x)SiO2
Glass in 2-D
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Ionic Conduction in Glass

  = neZ
 N is the number density

eZ is the charge +1 most of

 Calculation:
 Take: 

22 3 eZ is the charge, +1 most of 
the time

  is the mobility

 n ~ 1022 M+/cm3

 A-M Universities…
  ~ 10-9 (cm)-1 Oxide glass 

 Estimation:
 What are the units of n?
 What is the approximate 

 What is ?
 N-Z Universities…
  ~ 10-3 (cm)-1 Sulfide glassat s t e app o ate

magnitude of n for a glass?
 What are the units of eZ?
 What is it magnitude for Li+?

   10 (cm) Sulfide glass 
 What is ?

 Compare Si
 What is it magnitude for Li ?
 What are the units of ?

 What is the conductivity of a 
typical n doped Si?

 What is ?
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DC ion conductivity in glass

 Arrhenius temperature 
dependence

 xLi2O + (1-x)P2O5

 Creation of non-
bridging oxygens

 “Mobile” lithium ions
 The higher the 

concentration of Li2O, 2 ,
the higher the 
conductivity
 Lower resistivity

 Activation energy 
decreases with Li2O
content
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Chalcogenide Glasses have significantly higher conductivities

Salt doped lithium phosphate and thiophosphate glasses
 dc act
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Relation of Glass Structure to Ionic Conduction

xNa2O + (1-x)SiO2
Glass in 2-D
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Mobility and Number Dependence of the Conductivity
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Question: What are the magnitudes of ES(M) and EC ?
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Short Range Order Models

 Anderson-Stuart Model
 Assignment of Coulombic and Strain energy terms, EC + Es

 “Creation” or Concentration versus Migration energy terms, EC + Es

 Coulomb energy term, EC attractive force between cation and anion
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 For Li+  in a oxide and sulfide glass
 Homework, Take Cstruct / ~ 1



 What are the approximate values of rc, rd, and ?
 What is the approximate magnitude of EC?
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Short Range Order Models

 Strain energy term - Es

 “Work” required to “dilate” the network so large cations 
i tcan migrate

E G r rS c d  ( ) /2 2

G Sh d l

Cation size affect on Strain Energy

40
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G         Shear modulus
rc Cation radius
rd Interstitial site radius
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E s
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 Jump distance0
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0 0.04 0.08 0.12 0.16 0.2

Cation Radius (nm)

 For Li+  in an oxide and sulfide glass
 Homework
 What are the approximate values of rc, rd, and ?What are the approximate values of rc, rd, and ?
 What is the approximate magnitude of Es?
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Ion Conduction in Glass: Coulombically or Structurally 
Constrained?Constrained?
 Oxide glasses, Eact ~100 kcal/mole
 Sulfide glasses E t ~10 kcal/mole Sulfide glasses, Eact 10 kcal/mole
 Eact Es Ec

 Are alkali cations coulombically, Ec , constrained?y c 
 Weak Electrolytes  like HOAc,  kA ~ 1 x 10-5 ?
 Cations are only weakly dissociated

Are alkali cations structurally E constrained? Are alkali cations structurally, Es, constrained?
 Strong electrolytes like NaCl?
 Completely dissociated, Na+ Cl- ?
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Models of the Activation Energy
 Both activation energies appear to be non-zero and contribute to the 

total activation energy
 Anderson-Stuart1 model calculation

 2/)( 2 dcS rrGE 












 
2
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12

.
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C rr

eZZCE

x Na2O + (1-x)SiO2 Es (calc)
kcal/mole

Ec (calc)
kcal/mole

Eact(calc)
kcal/mole

Eact
2

kcal/mole
11 8 11 7 66 9 78 6 68 111.8 11.7 66.9 78.6 68.1
19.2 10.9 62.3 73.2 63.7
29.7 10.0 56.1 66.1 59.7

 Calculation shows that the Ec term is the larger of the two energy 
barriers.

 Coulombically constrained?
1 Anderson Stuart J Amer Cer Soc 1954
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1 Anderson, Stuart, J. Amer. Cer. Soc., 1954
2 SciGlass 5.5, Average of many glasses
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Alkali Radii Dependence of Strain and Coulomb 
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Strong and Weak Electrolyte models

 “Strong electrolyte” model suggests all
cations are equally available for 
conductionconduction.
 Each cation experiences an energy 

barrier which governs the rate at which 
it hops

 “Weak electrolyte” model suggests 
only those dissociated cations are 
available for conduction

Dissociation creates mobile carriers Dissociation creates mobile carriers 
available for conduction

 SE models suggests that EC + Es
both contribute, one could be larger or , g
smaller than the other

 WE model suggests that Ec is the 
dominant term 
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Thermodynamic Models of Ionic Transport

 Glass is considered as a solvent into which salt is 
dissolved

 If dissolved salt dissociates strongly then glass is If dissolved salt dissociates strongly, then glass is 
considered a strong electrolyte

 If dissolved salt dissociates weakly, then glass is 
considered a weak electrolyteconsidered a weak electrolyte

 Coulomb energy term calculations suggest that the salts 
are only weakly dissociated, largest of the two energy 
terms

 Migration energy term is taken to be minor and weaker 
function of compositionp

 Dissociation constant then determines the number of 
mobile cations available for conduction, dissociation 
limited conductionlimited conduction
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Weak Electrolyte Model,  Ravaine & Souquet ‘80

1/2M2O + SiO4/2 3/2O-Si-O-M+  3/2O-Si-O- ……  M+

(U t d) (R t d b t U di i t d) (Di i t d)(Unreacted) (Reacted but Undissociated) (Dissociated)
Kdiss =  aM+ aOM- / aM2O

~ [M+][OM-]/aM2O = [M+]2/ aM2O [M ][OM ]/aM2O  [M ] / aM2O

[M+] ~  Kdiss
1/2aM2O

1/2  n

 =  zen zeKdiss
1/2aM2O

1/2 ~ C aM2O
1/2

l K N 2RT/4  + )log Kdiss ~  -Ne2RT/4 r+ + r-)

As r+, r- increase, Kdiss increases
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AC versus DC Ionic Conductivity
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Charles - Polarization/Diffusion Jonscher - Universal Response
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Moynihan/Macedo - Debeye & Faulkenhagen Theory Moynihan - Modulus
Ravaine/Souquet Weak Electrolyte Dyre Power Law
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Ravaine/Souquet - Weak Electrolyte Dyre - Power Law
Malugani- AgI Micro domains Funke - Jump Relaxation
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AC ionic Conductivity in Glass

 Connection to Far-IR vibrational modes Angell ‘83
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