

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

Local Atomic and Electronic Structure: X-ray Absorption Fine Structure and Other Inner Shell Spectroscopies

Bruce Ravel

Synchrotron Methods Group, Ceramics Division National Institute of Standards and Technology

Applications of Synchrotron Techniques in Glass Research 6-7 April, 2009

This document is copyright ©2009 Bruce Ravel.

This work is licensed under the Creative Commons Attribution-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

> You are free: to Share — to copy, distribute, and transmit the work to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only under the same, similar or a compatible license.
- Any of these conditions can be waived if you get permission from the author.
- For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to the URL for this document.
- Any of the above conditions can be waived if you get permission from the copyright holder.
- Nothing in this license impairs or restricts the author's moral rights.

Your fair dealing and other rights are in no way affected by the above. This is a human-readable summary of the Legal Code (the full license).

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μm probe 10 μm probe Smaller probes Time resolution Energy resolution

The basic physical process in XAS and XRF

An incoming photon interacts with a deep-core electron.
 Shown here, a 1s electron is excited for a K-edge spectrum.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

The basic physical process in XAS and XRF

- An incoming photon interacts with a deep-core electron. Shown here, a 1s electron is excited for a K-edge spectrum.
- The deep-core electron is promoted to some unoccupied state above the Fermi energy, propagates away, and leaves behind a core-hole.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

The basic physical process in XAS and XRF

- An incoming photon interacts with a deep-core electron. Shown here, a 1s electron is excited for a K-edge spectrum.
- The deep-core electron is promoted to some unoccupied state above the Fermi energy, propagates away, and leaves behind a core-hole.
- A short time later (1 or 2 femtoseconds), a higher-lying electron decays into the core-hole and emits a photon.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Characteristic energies

Each element has a characteristic set of excitation and fluorescence energies. Two examples:

Iron:	Z=26	5					
	Edge	Energy	Line	Transition	Energy	Strength	
	K	7112	$K\alpha_1$	K-L3	6405.2	0.580	
	L3	706.8	$K\alpha_2$	K-L2	6392.1	0.294	
	L2	719.9	$K\beta_1$	K-M3	7059.3	0.082	
	L1	844.6	$K\beta_3$	K-M2	7059.3	0.043	
			$K\beta_5$	K-M4,5	7110.0	0.001	

Uranium: Z=92								
Edge	Energy	Line	Transition	Energy	Strength			
K	115606	$L\alpha_1$	L3-M5	13614.0	0.686			
L3	17166	$L\alpha_2$	L3-M4	13438.0	0.077			
L2	20948	$L\beta_2$	L3-N4,5	16387.7	0.181			
L1	21757	$L\beta_5$	L3-O4,5	17063.2	0.038			
		$L\beta_6$	L3-N1	15727.0	0.013			
		L_ℓ	L3-M1	11618.0	0.005			

The exact energy positions of edges and lines are sensitive to the chemical environment of the absorber.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

A simple picture of X-ray absorption

An incident x-ray of energy E is absorbed, destroying a core electron of binding energy E_0 and emitting a photo-electron with kinetic energy $(E - E_0)$. The core state is eventually filled, ejecting a fluorescent x-ray or an Auger electron.

An empty final state is required. No available state, no absorption! When the incident x-ray energy is larger than the binding energy, there is a sharp increase in absorption.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

For an isolated atom, $\mu(E)$ has a sharp step at the core-level binding energy and is a smooth function of energy above the edge.

X-ray absorption in condensed matter

The ejected photo-electron can scatter from neighboring atoms. R has some relationship to λ and there is a phase shift associated with the scattering event. Thus the outgoing and scattered waves interfere.

The scattering of the photo-electron wave function interferes with itself.

 $\mu(E)$ depends on the density of states with energy $(E - E_0)$ at the absorbing atom.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

More Information

This interference at the absorbing atom will vary with energy, causing the oscillations in $\mu(E)$.

XAS and Valence State

As the valence increases

 $Mn^0 \rightarrow Mn^{2+} \rightarrow Mn^{3+} \rightarrow Mn^{4+}$

the edge position shifts to higher energy.

XAS is a direct measure of valence state

Since each element has its own edge energy, an element's valence can be measured even in a heterogeneous sample and even if it is a minority component.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

XAS and Local Atomic Structure

• The different Mn species display big differences in the fine structure beyond the edge as the valence increases (Mn⁰, Mn²⁺, Mn³⁺, Mn⁴⁺). The white line and subsequent oscillations are quite different.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

XAS and Local Atomic Structure

- The different Mn species display big differences in the fine structure beyond the edge as the valence increases (Mn⁰, Mn²⁺, Mn³⁺, Mn⁴⁺). The white line and subsequent oscillations are quite different.
- The oscillatory portion of the spectrum can be isolated and ...

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

XAS and Local Atomic Structure

- The different Mn species display big differences in the fine structure beyond the edge as the valence increases (Mn⁰, Mn²⁺, Mn³⁺, Mn⁴⁺). The white line and subsequent oscillations are quite different.
- The oscillatory portion of the spectrum can be isolated and ...
- … Fourier transformed. This FT function can be interpreted in terms of partial pair distribution functions of atoms about the absorber. The Mn-O distances are different for the Mn²⁺, Mn³⁺, and Mn⁴⁺ and clearly different from the Mn-Mn distance in Mn metal.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

XAS is a direct measure of local structure

- Since each element has its own edge energy, an element's local structure can be measured even in a heterogeneous sample and even if it is a minority component
- No assumption of symmetry or periodicity is made, so the sample can be crystalline, amorphous, thin film, in solution, surface sorbed, ..., *whatever*
- Since x-rays are deeply penetrating into matter, minimal sample preparation is required
- Samples can be measured in situ, which can mean
 - cryostat or furnace
 - high pressure cell
 - electrochemistry cell or fuel cell
 - peristaltic or stop-flow pump with liquid samples
 - high field magnet
 - etc...

As a result, XAS is used in a very broad array of scientific disciplines

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

More Information

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Part 1: Length scales

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Part 2: Time scales

XAS

Inner Shell Spectroscopy

Part 3: Spatial resolution and disorder

Spatial Resolution

- The ultimate resolution of EXAFS is a complicated and open question. In normal practice, it is limited by the extent of the measurement to $\mathcal{O}(0.01 \text{ Å})$.
- Techniques sensitive to symmetry breaking (Bragg, Raman) may be much more sensitive that EXAFS.

Structure Disorder

- EXAFS measures disorder about inter-atomic distance.
- Diffraction and Mössbauer measure disorder about lattice position.
- In general, relating these disparate measures of disorder is very difficult.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Part 4: What makes EXAFS wonderful?

Element selectivity: Thus EXAFS is sensitive to small minority components of a sample

- No assumptions of symmetry or periodicity: Both theory and analysis are independent to symmetry and periodicity, thus EXAFS is applicable to a very broad range of sample types.
- In situ measurements: Hard x-rays are deeply penetrating, thus the sample can be maintained in exotic conditions of temperature, pressure, chemical potential, fluid flow, etc....
- **Ease of measurement:** Good practice is required (of course), but both sample preparation and measurement are relatively straightforward.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Part 5: What makes EXAFS troublesome?

Near-sightedness: EXAFS is insensitive to correlations beyond a few Ångstroms.

Scatterers of similar Z: EXAFS has a hard time with neighbors that are close on the periodic table. For instance, it is very hard to distinguish As and Se neighbors.

Mixed phase or multi-site materials: EXAFS looks at all the atoms beneath the footprint of the beam. If the absorber exists in multiple phases, EXAFS interpretation can be difficult or impossible.

Quantitative analysis: Although measurement is simple, analysis can be very challenging and requires extensive training and practice.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

EXAFS & this workshop

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Klaus Attenkofer: ultrafast time resolved EXAFS
 Faisal Alamgir: interpretation of the XANES for soft and hard X-rays
 Neville Greaves: combining EXAFS with other synchrotron measurement techniques
 Simon Billinge: total X-ray scattering (AKA PDF), this technique and EXAFS complement one another in several important ways

Plutonium containment

My colleagues from University of Sheffield come to X23A2 to study zirconolite glassification by ion-implantation as an analog for α -recoil damage from actinide impurities. The research is related to long-term Pu containment strategy.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Ceramic wasteform design

What is effect of cumulative α-recoil damage on material structure and Pu retention? Expect material to become metamict, but what does the metamict structure look like?

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

・ロト ・ 日・ ・ 田・ ・ 日・ ・ 日・

Laboratory Grazing Incidence XRD

GIXRD measurements of the pristine zirconolite surface show that crystalline structure persists to the surface.

After heavy ion bombardment, the bulk crystallinity vanishes near the surface.

Can we learn anything useful about the structure of the damaged surface?

Data courtesy M. Stennett, D. Reid, N. Hyatt, unpublished

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Grazing Incidence XAS

- A. Incident intensity ionization chamber
- B. Transmitted intensity ionization chamber
- C. 5 dimensional sample stage
- D. Energy discriminating fluorescence detector

And the sample is a polished zirconolite wafer. By controlling the tilt of the sample stage, we can control the penetration depth of the beam into the sample.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Ti K Edge XANES

At a $\sim 0.1^\circ$ angle of incidence, we see dramatic differences in the GIXAS spectrum compared to the bulk XAS spectrum.

- The shift in edge position and increase in the height of the first peak indicate a change from 6-fold to 5-fold coordination.
- The dampening of the oscillations above the edge suggest an increase in local structural disorder.

Data courtesy M. Stennett, D. Reid, N. Hyatt, unpublished

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

Ti K Edge EXAFS

- The signal from oxygen in the first coordination shell is reduced and broadened.
- The signals from higher shells (Ca, Zr, etc.) are similarly reduced.

These data can be quantitatively analyzed to get coordination numbers of and distances to the neighboring atoms.

イロト 不得 トイヨト イヨト

3

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Zr K Edge EXAFS

The structural changes observed at the Zr K-edge are much more subtle. There is a slight red-shift of the edge energy, a slight shortening of the Zr–O bond, and an increase in higher shell disorder.

Moving Forward

I have only sketched the outline of how XAS is applied to this problem. The next step is, of course, quantitative analysis of the Ti and Zr EXAFS data.

The Sheffield group is returning to X23A2 later this month to continue this work. Stay tuned for results...

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

Our future!

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux

Spatial heterogeneit; 200 μm probe 10 μm probe Smaller probes Time resolution Energy resolution

More Information

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

How can we use high flux?

Low concentrations: Higher flux allows us to push down our measurement sensitivity limits, as in this experiment of Hg²⁺ adsorbed on biomass at concentrations from 350 μ M down to 0.5 μ M:

Photon-starved experiments: Focusing optics and specialized detection technology are necessarily inefficient.

Mercury data courtesy B. Mishra and S. Myneni, measured at APS 10ID, unpublished

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux

Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Focussing optics

Different types of focussing optics can be matched to the relevant length scales of different samples

Focusing mirrors A total external reflection mirror is bent to condense the x-rays vertically or toroidally. Slits may be used to define the horizontal extent. ($> 50 \ \mu m$)

Kirkpatrick-Baez mirrors Short mirrors with excellent figures are used in both directions to define a small spot. (1–25 μ m;

Refractive optics Fresnel zone plates — or other types of refractive lenses — define a small first order spot $(< 1 \mu m; < 100 nm at NSLS-II)$

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity

200 μm probe 10 μm probe Smaller probes Time resolution Energy resolution

Gravel Contaminated with U

Gravel embedded in epoxy with a polished surface Under a UV lamp, U glows greenish.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μm probe 10 μm probe Smaller probes Time resolution Energy resolution

More Information

D. Phillips et el., Environ. Sci. Technol., **42**:19, pp. 7104–7110 (2008)

Gravel Contaminated with U

Gravel embedded in epoxy with a polished surface UV photo + superposed U map — 200 $\mu{\rm m}$ probe at APS 10ID.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μm probe 10 μm probe Smaller probes Time resolution Energy resolution

More Information

 High quality XAS data is measured with the 200 μm probe. We can see the variation in U quantity under the spot in the XAS step size.

- 日本 - 4 日本 - 4 日本 - 日本

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution

More Information

μ -EXAFS

- High quality XAS data is measured with the 200 μm probe. We can see the variation in U quantity under the spot in the XAS step size.
- Normalizing the data, we see variability in the XANES, indicating spatial heterogeneity in U speciation.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity **200** µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

μ -EXAFS

- High quality XAS data is measured with the 200 μm probe. We can see the variation in U quantity under the spot in the XAS step size.
- Normalizing the data, we see variability in the XANES, indicating spatial heterogeneity in U speciation.
- The EXAFS is of high quality and can be analyzed to uncover the different structural environments around the U at the various locations.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity **200** µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

Uranyl incorporation in calcite

 μXAS at APS beamline 10ID was used to quantify the structure of uranyl incorporation into an ancient calcite. This identifies a plausible strategy for uranium sequestration.

S.D. Kelly, et al, Environ. Sci. Technol. (2006) 40:7, 2262–2268

2x10¹⁶ total photons

10 μ m spot; 10¹¹ ph/sec for 2.5 continuous days:

Flux is very significant for XAS

Exps. at relevant concentrations that cannot be done at NSLS will become routine at NSLS-II.

< ロ > < 個 > < 差 > < 差 > < 差 > の < ()</p>

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μm probe **10 μm probe** Smaller probes Time resolution Energy resolution

Sub micron probes at NSLS-II

The SRX Beamline: A KB-mirror-based μ -XRF, μ -XRD, and μ -XAS beamline with a spot size of $\mathcal{O}(100 \text{ nm})$. The Nanoprobe: One of the NSLS-II flagship beamlines using refractive optics to attain a spot size as small as 1 nm.

Possible uses in glassy materials

o ...

 $\bullet\,$ Study individual crystallites with $\mu{\rm m-}$ or nm-scale XRF, XRD, and XAS

- Study inclusions with the micro/nano probe
- Study segregated phases with the micro/nano probe

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes

Time resolution Energy resolution

Various time scales

Time-resolved measurements are inherently photon-starved

In general, the more photons you have, the more you can do.

Slew scanning: Sub-minute XANES and EXAFS scans could be performed at any conventional, step-scan XAS beamline given certain upgrades to the hardware and software. This mode of measurement is routine at APS 10ID and elsewhere.

Cam driven mono: Sub-second XANES and EXAFS scans are routine at NSLS X18B, SLS SuperXAS, and elsewhere.

Laser initiated time resolution: See Klaus's talk!

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

Wavelength dispersive detection

Many novel possibilities become available with detection strategies that have energy resolution superior to silicon or germanium based detectors.

Bent Laue analyzers

Superior energy resolution for XRF mapping and lifetime suppression for XANES

Emission spectrometry

Study electronic structure by careful measurement of fluorescence lines

Inelastic scattering spectrometry

Low energy edges measured using high energy, deeply penetrating photons

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

Spectrometers: Bent Laue analyzers

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

See A.J. Kropf, et al, Rev. Sci. Instrum. 74 (2003) 4696- 4702. Hi-res XAS courtesy A.J. Kropf

Spectrometers: XES & RIXS

Johann-Rowland – ESRF ID26, NSLS X3(?)

Instrumentation

Short working distance – APS 20ID

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

P. Glatzel, U. Bergmann, Coord. Chem. Rev. **249** (2005) 6595; B. Dickinson, et al. Rev. Sci. Instrum. **79**, 123112 (2008)

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

Spectrometers: XES & RIXS

Science examples

Energy analyzing the fluorescence lines yields information about the electronic structures of different chemical states.

Combining this with a scanning monochromator, the RIXS plane is measured, elucidating the conventional XAS spectrum.

XES and RIXS data: P. Glatzel, U. Bergmann, Coord. Chem. Rev. **249** (2005) 6595; XAS data: BR, unpublished

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

Spectrometers: LERIX

Lower Energy Resonant Inelastic Scattering

Probe the sample with hard x-rays and use the crystal analyzers to resolve the energy loss in the nearly-elastically scattered radiation due to absorption by low-energy edges.

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

Soft x-ray edges measured with hard x-rays!

Consider, say, a C K-edge of a buried layer.

T.T. Fister et al, *Rev. Sci. Instrum.* **77**, 063901 2006 and G.T. Seidler, et al, AIP Conf. Proc. 882, p. 911 (2006).

Learning more about XAS

- http://xafs.org is a splendid resource. The "Tutorials" and "Workshops" pages are particularly useful for the newcomer to XAS.
- The IFEFFIT mailing list is an archived place to ask questions about XAS in general and the IFEFFIT software in specific. http://millenia.cars.aps.anl.gov/mailman/listinfo/ifeffit/
- There will be an XAFS Summer School at the APS in July. http://xafs.org/Workshops/APS2009
- The NSLS XAFS Online Orientation is an exciting work-in-progress. http://www.nsls.bnl.gov/users/access/modules/xafs/

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

Software

http://cars9.uchicago.edu/iffwiki/Ifeffit
For other software options: http://xafs.org/Software

(ロ) (四) (三) (三) (三) (○)

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 μ m probe 10 μ m probe Smaller probes Time resolution Energy resolution

My final comment

Inner Shell Spectroscopy

Bruce Ravel

Introduction to XAS

Context Other measurements Other talks

XAS in a real-world glassy material problem

Using high brilliance and flux Spatial heterogeneity 200 µm probe 10 µm probe Smaller probes Time resolution Energy resolution

More Information

・ロト・日本・日本・日本・日本・今日・

To the university faculty among us

NSLS-II (and other synchrotrons) needs good staff scientists. Encourage some of your students to fall in love with synchrotron radiation.