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Correlation functions

and linear response theory
- Mean square displacement and diffusion

- Van Hove correlation functions

- Intermediate scattering functions

- Linear response theory, time correlations

- Applications

We have generated sets of (x,y,z) positions for various times at various given

thermodynamic conditions (N,V,T,P).  Today we focus mostly on time dependence !



A) MEAN SQUARE DISPLACEMENT AND DIFFUSION

The mean square displacement is defined as 

- performed in NVE or NVT.

- do not use periodic boundary conditions

Gives a direct description of the dynamics.

As2Se3

Bauchy et al., PRL 2013 Kob PRE 2000

A-B Lennard-Jones liquid
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More insight into the msd…

GeO2

Caging régime (LT)Ballistic régime

msd~t2

Short time

Diffusive régime

Long times
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Behavior with temperature

Usually, a gentle Arrhenius behavior : D=exp[-EA/kBT]

GeO2

SiO2-2Na2O

Micoulaut et al. PRE 2006

Bauchy et al. Chem Geol. 2013

• Species dependent. Na diffuses faster than

Si or O in silicates
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Behavior of the diffusion constant with other thermodynamic variables

• Dependence on V or P.

• To be comparable with experiment, 

should be calculated at P=0.

• Usually at fixed V (e.g. Vg) and P non-zero

Bauchy et al., PRB 2011

Errington et al. Nature 2001

H2O
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� To go further in correlation study, one can follow correlation both in space and 

time. This information is richer, but the price to pay is the calculation of a two-

variable correlation function, at least. 

� We introduce these functions because they are also available in experiments, 

essentially form neutron scattering.

B) VAN HOVE CORRELATION FUNCTION

We first introduce a density correlation function G(r,r’,t) defined from the local atomic

densities:

or : 

For an homogeneous system, G depends only on the relative distance. Integration gives:
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At t=0, we have 

Except a singularity at the origin, the Van Hove correlation function is proportional to the 

pair correlation function g(r). We can split the function into two parts, self and distinct: 

which can be established at

non-zero times:
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Physical interpretation: 

� The Van Hove function is the probability density of finding a particle i in the 

vicinity of r at time t, knowing that a particle j is in the vicinity of the origin at

time t=0.

� The self part Gs(r,t) is the probability density of finding a particle i at time t 

knowing that this particle was at the origin at time 0. Probability that a particle 

has moved a distance r in time t (dynamics).

� The distinct part Gd(r,t) is the probability density of finding a particle j different 

from i at time t knowing that the particle I was at the origin at time t=0. 

Probability to find at time t a different particle at a distance r from a place at 

which at time t=0 there was a particle. And Gd(r,0)=g(r).
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Normalization of the functions leads to :

Integration over space, Gd(r,t) is able to count the remaining particles

In the long-time limit, the system looses memory of the initial configuration and the 

correlation functions become independent of the distance:
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Examples: Self part in Na silicates

� At short times, Gs(r,t) ~δ(r)

� Small times: rattling and hopping motion on the length scale of nearest neighbors.

� Spatial extent of the motion is determined by thermodynamic conditions: T 

(viscous slowing down) or P (motion blocked by the high density).

Kob, PRB 2000

Bauchy, PRB 2011
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Examples: Distinct part in a binary A-B mixture

� At high temperature, the correlation hole at r=0 is quickly filled up

� At low temperature, correlation hole survives at long time

Kob and Andersen, PRE 1995
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C) DYNAMIC STRUCTURE FACTOR

Fourier (time) transform of the intermediate scattering function (see next lectures)

Neutron weighted dynamic structure factor

(similar to static one): 

Access to partial  dynamic structure factors :

� Can be compared to measurements extracted from

coherent inelastic neutron scattering. 

Differential cross-section (d2σ/dωdΩ) proportional to S(q,ω) Jin and Vashishta PRB 1993

SiO2

matthieu.micoulaut@upmc.fr Atomic modeling of glass – LECTURE 6 TIME CORRELATION



D) LINEAR RESPONSE THEORY

� Goal: Having MD generated trajectories at our disposal, we want to compute

- viscosity, electrical or thermal conductivity, mechanical properties, etc.

Use of linear response theory

� General idea (Onsager): Disturbance in a system created by a weak external

perturbation decays in the same way as a spontaneous fluctuation in equilibrium.

� Linear response theory : link between time correlation functions and response to 

weak perturbations (Green-Kubo’s fluctuation-dissipation relations)

� Static response (e.g. polarization, electric current) to a constant weak applied field. 

• Property characterized by a dynamic variable A.

• Change in the Hamiltonian H0-λB(pN,qN)

• External perturbation brings the system from Ensemble average <A>0 to 

<A>0+<∆A>.
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• External perturbation brings the system from Ensemble average <A>0 to <A>0+<∆A>.

• The Ensemble average <A> for this perturbated A is :

Γ is the integration over phase space variables (qN,pN)

• <A> can be expressed as a linear Taylor expansion: <A>=<A>0+λ(d<A>/dλ)λ=0 involving

the quantity:

� Similarly, we can compute the dynamic response

� Preparation of the system under a weak constant perturbation. One thus has 

<A>=<A>0+<∆A>

� At t=0, the perturbation is switched off. Reponse ∆A decays to zero.

� Ensemble average of ∆A at time t is given by:

with A(t) the value of A at time t in a system starting at point Γ.
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In the limit λ=0 (and assuming that <A>0=0), we can simplify to:

The decay of ∆A of the system is determined by a time correlation function

describing the decay of spontaneous fluctuations of A in equilibrium under an 

external perturbation B. 

E) TIME CORRELATION FUNCTION

� Let us consider two time dependent signals A and B. The general time correlation

between them is given by:

A=B: auto-correlation. Otherwise cross-correlation which is the case in linear response
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� At equilibrium, the correlation is invariant under time translation, i.e. 

NB: Glasses C(t) is not time invariant so that t depends on t0=tw (waiting time)

� In the limit of no delay time, C(0) is the static correlation function

� Can be normalized to the value at t0:
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G) APPLICATIONS-1: ELECTRICAL CONDUCTIVITY

Hamiltonian of the system with vector potential is given by :

A being a jauge field. 

I remind that from in Classical Electromagnetism, the generalized momentum

p of a particle with mass m and charge q moving at a velocity v in a vector potential

A is pppp=mvvvv+eiAAAA.

� The vector potential is switched off at t=0. The electrical field is an infinitesimal spike 

(delta function) given that:

� At the first order, we can write :

with j(r) the current density
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From the expression of the perturbated Hamiltonian, we obtain the correlation

function:

we can write the average current density as:

and, expanding at small vector A, we have:

Remember that we have Ohm’s law (j=σE) and for the response function :

so that (E(t) is a Dirac function):

and finally:


(�) =
��Γ�

�� ���
�
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Vashishta et al. JAP 2008

Example-1: Electrical conductivity in amorphous aluminia

Computation of the current from the atomic velocities:

Normalized current autocorrelation function: 

Frequency dependent conductivity
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Spera et al. JCP 2001

Example-2: Electrical conductivity in an aluminosilicate liquid

� Plot of σ(t)  following:

� Access to σdc

� Behavior with temperature (Arrhenius)
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Example-3: Beyond linear response theory-usefulness of MD

� The computation of σ(t) or σdc and successful comparison with

experiment is the starting point (prerequisite) of atomic scale insight of 

conductivity.

� Channel conduction in silicates

Link with static structure factor

Typical distance related to

q=0.9A-1

Prasada Rao et al. SS Ionics 2011

Meyer et al. PRL 2004
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F) APPLICATIONS-2: THERMAL CONDUCTIVITY

Similar treatment to electrical conductivity.

� Define a heat current

with Ei, energy of atom i

� Compute the autocorrelation function:

a-Si

Jund and Jullien, PRB 1999

SiO2

Lee et al., PRB 1991

matthieu.micoulaut@upmc.fr Atomic modeling of glass – LECTURE 6 TIME CORRELATION



F) APPLICATIONS-3: VISCOSITY

� Shear can not be interpreted in terms of an external field acting on all particles.

� Use of a canonical transformation corresponding to uniform shear transforming

linearly the coordinates from rN to r’N with r’i=hijrj and hij=1+εij~1

� This means that we transform the Hamiltonian from :

to:

with G the metric tensor defined as: 

� Effect of uniform shear, e.g. εxy=ε otherwise 0.

� Assume equilibration of the system with Hamiltonian H1 (i.e. under shear) and then

switch off ε at t=0 (now left with H0).
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� Assume equilibration of the system with Hamiltonian H1 (i.e. under shear) and 

then switch off ε at t=0 (now left with H0).

� The system experiences a δ-function spike in the shear rate, i.e. one has:

� Time-dependent response of the shear stress, σxy(t) to the sudden change from

H1 to H0:

where σxy (tensor) can be computed via: 

Remember (lecture 5) that pressure is :

SiO2-2Na2O

2000K
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� Again, remember that:

with f(t’) the δ-function of the shear rate.

We find that

� Then, we remember Newton’s law for viscosity.

Under laminar flow, the force exterted by a fluid in the x-direction is

proportional to the velocity gradient, the constant of proportionality being the 

shear viscosity.

� The shear stress is thus : �� = !
"#�
" 

	and, by	identification:
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Example-1: Viscosity of a silicate liquid (NS2) and MORB under pressure

Bauchy et al. Chem. Geol. 2013

NPT (P=0), then NVE

NVE alone
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G) APPLICATIONS-3: VISCOSITY
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G) APPLICATIONS-3: VISCOSITY

Example-1: Viscosity of a silicate liquid (NS2) and MORB under pressure

� Detecting anomalies (minima in viscosity)

� Checking for empirical relationships

Eyring (1948):	! = /01/34

With λ a jump distance (dO-O~ a few A)

• Compute (MD) D and η
• Valid only at high viscosity



Example-2: Viscosity of silica

Horbach and Kob, PRB 1999
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Conclusion:

� Dynamic quantities can be estimated from Molecular Dynamics

Time-dependent structural correlations

Transport coefficients (linear response theory)

� Insight into the glass transition phenomenon (see next lectures) 

� Agreement with experiments is less obvious (as compared to structure)

Next time: Force fields and limitations


