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LECTURE 7 : CALCULATING PROPERTIES
Space correlation functions

Radial distribution function
Structure factor
Coordination numbers, angles, etc.

We have generated sets of (x,y,z) positions for various times at various

given thermodynamic conditions (N,V,T,P). Now, we use them.



A) RADIAL DISTRIBUTION FUNCTION

Structural caracterization: Probability densities ρN
(1) and ρN

(2)

i.e. one can find N particles and N(N-1) pairs of particles in the total volume, respectively.

Note that these are n=1 and n=2 cases of a general correlation function g(n) given by :

ZN the partition function, V the volume, N the nb of particles
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So that one can write for e.g. n=2:

which defines the radial distribution (rdf) gN
2(r1,r2) function, also given by

For an homogeneous isotropic system, one has ρN
(1)=ρ. Dependence of the rdf only on 

relative distance between particles:

So that ρg(r) is the conditional probability to find another particle

at a distance r away from the origin. 
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g(r) is the pair correlation function

In a simulation box with PBC, one cannot obtain the 

structure beyond r > L/2.

Alternatively:

� Radial distribution function : 

� Pair correlation function:

Alternative definitions :

� Total distribution function:

� Differential distribution function
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Pair distribution function : examples

Visual inspection allows to distinguish between a crystalline and an 

amorphous structure 

CCP Ni lattice with EAM potential

matthieu.micoulaut@upmc.fr Atomic modeling of glass – LECTURE5 MD CALCULATING



Effect of thermodynamic variables : temperature

Amorphous Se

The integral of g(r) allows to 

determine the number of neighbors

around a central atom.

Remember

The integral to the first minimum 

gives the coordination number.

rm
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Running coordination number N(r)
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Effect of thermodynamic variables : pressure 

� Direct comparison with experiments can fail

� Simple force fields can not account for 

pressure-induced changes (metallization)

� Additional structural insight is provided by 

partial correlation functions : Ge-Ge, Ge-O, 

O-O

Expt. (neutron) Salmon, JPCM 2011

MD: 256 GeO2 using Oeffner-Elliot FF

d-GeO2

Micoulaut, JPCM 2004
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Effect of composition: extending to multicomponent systems
This is case for most glasses and materials

SiO2, GeSe2, SiO2-Na2O,…

Consider a system with n components having

N1, N2, …Nn particles.

We can write

with α between [1,n]

And for ! ≠ #:

Out of which can be computed the pair correlation function:

(can be also neutron or XRD weighted)
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D. Marrocchelli et al., 2010

Pair distribution function in multicomponent systems: GeO2

Evidence for neighbour correlations
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Pair distribution function in multicomponent systems: GeSe2

� Evidence for homopolar bonds Ge-Ge

and Se-Se

� Prepeaks in relevant pdfs
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Thermodynamic quantities from the computed g(r): Energy

First, one needs to remember that the energy is related to the partition function

Q(N,V,β) as:

where :

λ comes from the integration of the momentum p in the phase space given by:

so that:
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and

In order to compute the average energy, one needs to compute the average potential U.

Assume the case of a pairwise potential, so that:

i.e. U is a sum of terms depending only between 2 particles, and thus contains N(N-1) 

terms. Then, we can write: 

(i.e. all terms in the first line are the exact same integrals, just with different labels)
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which contains a two-body probability distribution function ρ(2)(r1,r2) so that <U> 

can be rewritten as :

where we remind (slide 2) that :

One thus arrives to the result: 
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Example : Glass transition in a model A-B glass

Reproduction of the glass 

transition phenomenon

Flores-Ruiz et al. PRB 2010
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Thermodynamic quantities from the computed g(r): Pressure

We use the Maxwell relation:

The volume dependence can be made explicit by changing the variables:

so that we have from the  partition function ZN the desired derivative from V:

And:

which involves the force Fi acting on a particle i
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Again, for, pairwise interactions, Fi can be written as :

and since one has (interchanging i-j summations):

Using Newton’s third law, we furthermore have :

and the Ensemble average is given by:
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We do the same as for the energy:

and for a pair potential Upair:

And finally:

The pressure can be computed from the derivative of the pair potential and from g(r). 
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Examples: equation of state of liquids

Micoulaut et al. PRE 2006

Shell et al. PRE  2002

GeO2

SiO2
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B) STATIC STRUCTURE FACTOR

For a simple liquid, the static structure factor is given by :

where ρk is the Fourier transform of the microscopic density ρ(r). This reads as:

and, remembering that

one has:

If isotropic and uniform medium, remember that ρ(r,r’)=ρ2g(r,r’)

‘

ρ
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Also, g(r,r’) depends only on |r-r’|, i.e.:

Or (isotropic fluid, everything depends only on k=|k|):

The calculation of the structure factor S(k) is achieved via a Fourier transform of the 

pair distribution function g(r).
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Calculating a structure factor S(k) from a MD simulation : 2 options

1. Calculate the pair correlation function g(r) from the MD trajectory, then use :

2. Calculate directly S(k) from the trajectory using:

Differences between both methods can arise, 

and one is limited to r<L/2, i.e. k<ππππ/L

Effects of the components of the wavevector

As2Se3
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Direct comparison with experiments : neutron or X-ray diffraction

Intensity scattered in the direction kf

Equal to the computed structur efactor.

Kob et al. 1999
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Structure factor in multicomponent systems
SiO2, GeSe2, SiO2-Na2O,…

Consider a system with n components having N1, N2, …Nn particles.

We can write Faber-Ziman partial structure factors:

out of which can be computed a total structure factor:

� Neutron weighted:

with bi the neutron scattering cross section , ci the concentration of the species

bi=5.68 fm for Te (tabulated, depends on the isotope)

� X-ray weighted:

With fi(k) the X-ray form factor (elastic or inelastic XRD)
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v-SiO2

l-GeSe2

Micoulaut et al., PRB 2009

matthieu.micoulaut@upmc.fr Atomic modeling of glass – LECTURE5 MD CALCULATING



0 2 4 6 8 10

0

1

2

3

4

5

S
 (

Q
)

Q (Å-1)

 

 

Ag5

Ag15

Ag25

Various levels of agreement between theory and experiments can be found

Micoulaut et al. 2013

Data Petri, Salmon, 1991
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Detailed structural analysis from MD

� Neighbor distribution

Remember

First minimum of g(r) can be used to define the 

coordination number.

But this is an average. 

• Details are provided from the statistical analysis

of each atom. 

• Allows to characterize the nature of the 

neighborhood

• Can be extended to partial CN
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Raty et al. Solid State Sciences 2010

Examples-1

Straightforward
4 neighbours around Ge,Si

Amorphous Ge1Sb2Te4

Information on local geometry

- short and long bond distance around Ge

- CNTe>2
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Voleska et al., PRB 2013

Ga11Ge11Te78

Examples-2: Statistics of neighbors with homopolar bonds
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Detailed structural analysis from MD

� Bond angle distributions � Depending on the system, provides

information about the local geometry

(tetrahedral, octahedral,…).

� Directional bonding vs non-directionalSnSe2

1173 K

300 K

Micoulaut et al. PRB 2008
Cormack and Du, JNCS 2001

SiO2-Na2O
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Detailed structural analysis from MD

� Ring statistics:  serve to characterize the intermediate range order

• Remember the early work of Galeener (lecture 3) and the Raman characterization of 

rings

• Simulated positions can serve to define nodes and links.

When  connected sequentially without overlap, one has a path. 

A ring is therefore simply a closed path.

Each of these rings is characterized by its size and can be classified.

S. Le Roux, P. Jund, Comp. Mater. Sci. 2010
http://rings-code.sourceforge.net/
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Conclusions

� MD trajectories, once properly generated can lead to various structural 

informations under various thermodynamic conditions

• pair distribution functions g(r)

bond distances

partial coordination numbers, coordination numbers

neighborhood

• Structure factor S(k)

information at intermediate lengthscales

� Many other quantities of interest

• Rings

• Bond angle distributions

• Topological constraints - > Rigidity transitions (next lectures)

� With imagination, one can find out much more or invent much more

Next lecture : time correlations and linear response
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Final recommendation regarding structural properties

1. Do the best you can. 

2. Don’t fool the reader. 

3. Be honest with the data 

4. Do not attempt to dissimulate

5. Unique S(k) ?

Uncarefully simulated liquid GeTe4


