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LECTURE 11 : GLASSY DYNAMICS
- Intermediate scattering function
- Mean square displacement and beyond
- Dynamic heterogeneities
- Isoconfigurational Ensemble
- Energy landscapes



A) INTERMEDIATE SCATTERING FUNCTION

Instead of considering correlations in space, one can perform a study in reciprocal space, 
i.e. in Fourier components. 

� The intermediate scattering functionis defined as the Fourier transform of the Van 
Hove function:

out of which, can be defined a self and a distinct part: 

Instead of Fourier transform, these functions can be also directly computed from the 
atomic trajectories.
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1. Self part (incoherent intermediate scattering function):

� Fs(k,t) can be directly compared to experiments from inelastic neutron or X-
ray scattering.

� Fs(k,t) characterizes the mean relaxation time of the system (area under
Fs(k,t) can be used to define a relaxation time). Spatial fluctuations of Fs(k,t) 

provides information on dynamic heterogeneities.

� Short times : balistic régime

� Intermediate times: cage motion 
(β relaxation)

� Long times: Particles leaving cages. 
Kohlrausch (stretched exponential)          

behavior. 
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Examples : 
CaAl2SiO8

Tm=2000 K

Morgan and Spera, GCA 2001

Cage motion (β régime) extends to long times at lowT Horbach, Kob PRB 1999
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Slowing down of the dynamics: a more universal behavior…

Chaudhuri et al. AIP Conf. 2009

MD simulation of hard spheres
Effet of density

Experiments on bidimensional
granular packing

Dauchot et al. PRL 2006
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2. Distinct part (coherent intermediate scattering function):
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� Fd(k,t) can be measured in coherent inelastic neutron or x-ray scattering

experiments (k=kinitial-kfinal).

� Fluctuations of Fd(k,t) give information about dynamical heterogeneities.

Kob, 2000
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As2Se3

Bauchy et al., PRL 2013 Kob PRE 2000

A-B Lennard-Jones liquid
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B) MEAN SQUARE DISPLACEMENT AND BEYOND

Remember: The mean square displacement is defined as 

- performed in NVE or NVT.

- do not use periodic boundary conditions

Gives a direct description of the dynamics.



GeO2

Caging régime (LT)Ballistic régime
msd~t2

Short time

Diffusive régime
Long times
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B) MEAN SQUARE DISPLACEMENT AND BEYOND



B) MEAN SQUARE DISPLACEMENT AND BEYOND

Remember: The diffusion constant (Einstein relation) is defined as:

or from the velocity auto-correlation functions:

Interesting alternative:

� Diffusion constant measures the extent to which a particle’s initial velocity vi(0) biases 
its longtime displacement ∆ri in the same direction. 

� For an isotropic medium (liquids), can be written as the integral of a joint probability 
distribution of initial velocity and final displacement. 

� Diffusion can be written as 

and computed over MD time intervals 
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A) MEAN SQUARE DISPLACEMENT AND BEYOND

� At short times (hot liquid), the ballistic motion of particles is not spatially correlated
(Maxwell-Boltzmann distribution f(v)).

� At very long times (low temperature), particles lose memory of their original positions 
and velocities, and any spatial heterogeneity in the displacements is simply averaged 
out. 

� The presence of dynamic heterogeneity implies the existence of an intermediate time 
scale, dependent on the temperature, which reveals clustering in terms of particle 
mobility.

� For purely random diffusion, one has (solution of  Fick’s law): 
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B) MEAN SQUARE DISPLACEMENT AND BEYOND

� At short times (hot liquid), since one has a Maxwell-Boltzmann distribution f(v) and 
also ∆r i=vi∆t, P is also Gaussian.

� For moderate to deeply supercooled liquids, the intermediate-time behaviour of P 
becomes substantially non-Gaussian, reflecting the effects of ‘caged’ particles and the 
presence of dynamic heterogeneity.

� Reflected in a non-Gaussian parameter

� For a truly Gaussian distribution in r i, α2 =0 

� α2 (0)=0 and for  
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B) MEAN SQUARE DISPLACEMENT AND BEYOND

LJ liquid

Kob et al. PRL 1997

� On the time scale at which the motion 
of the particles is ballistic, 

α2 =0

� Upon entering the intermediate time 
scales (β-relaxation), α2 starts to 
increase.

� On the time scale of the α-relaxation, 
α2 decreases to its long time limit, 
zero. 

� The maximum value of α2 increases 
with decreasing T. Evidence that the 
dynamics of the liquid becomes more 
heterogeneous with decreasing T. 

Matharoo et al. PRE 2006



C) DYNAMIC HETEROGENEITIES

E. Weeks et al. Science 2000

� Observation: Particles in deep supercooled
liquids behave very differently at the same 
time.

� Most of the particles are 
characterized by a extremely slow 
evolution. 

� A small part evolves more rapidly. 
� Do these “rapid” regions have a 

collective behavior ?

� Seen experimentally in colloidal
hard sphere suspension (most
mobile particles highlighted)
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C) DYNAMIC HETEROGENEITIES

� Other example: Granular fluid of beads 
showing different mobilities

� The characterization of Dynamical 
Heterogeneitiesshows evidence of a collective 
behaviour

� Needs to build more suitable correlation 
functions. No signature of heterogeneous 
dynamics from g(r) or S(k) or even the msd.

� Consider the liquid of N particles occupying 
volume V with density Keys et al. Nature Phys. 2007
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C) DYNAMIC HETEROGENEITIES

� Measure of the number of ‘‘overlapping’’ particles in two configurations separated by a 
time interval t (time-dependent order parameter ):

out of which can be defined a fluctuation (time-dependent order parameter χ4(t):

which expresses with a four-point time-dependent density correlation function 
G4(r1,r2,r3,r4,t):
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C) DYNAMIC HETEROGENEITIES

� Four-point time dependent density correlation :

which can be reduced (isotropic media) to a function G4(r,t).

� Meaning of GGGG4(r,t): Measures correlations of motion between 0 and t 
arising at two points, 0 and r.

� Meaning of the dynamic susceptibility χχχχ4(t): Typical number of 
particles involved in correlated motion (volume of the correlated clusters)
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C) DYNAMIC HETEROGENEITIES

� Critical phenomena language: assuming the existence of a single 
dominant length scale ξ4, one expects for large distances to have :

or, in Fourier space (more convenient, simulation cell size limitation) using a 
four-point structure factor:

which can be fitted at low q (Ornstein-Zernike functional form of critical 
phenomena) involving a correlation length.
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C) DYNAMIC HETEROGENEITIES

Going through the functions for a LJ liquid

� Overlap order parameter Q(t)

Two-step relaxation (transient caging) similar to 
the behavior of the intermediate scattering function 
F(k,t). Decays to Qinf, random overlap, fraction of 
the volume occupied by particles at any given 
time.

� Sample to sample fluctuation:

Growth of correlated motion between pairs of 
particles. At long times, diffusion thus χ4(t)=0.

Lacevic et al. JCP 2003
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C) DYNAMIC HETEROGENEITIES

Going through the functions for a LJ liquid

� Radial correlation function G4(r,t).

� At small times (ballistic), <Q(t)>=1 so 
that g4=g(r)-1.

� Deviates when <Q(t)> deviates from 
unity and χ4(t) becomes non-zero.

� Four point structure factor 

Lacevic et al. JCP 2003
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C) DYNAMIC HETEROGENEITIES

Going through the functions for a LJ liquid

� Fitting using the Ornstein-Zernike theory

� Allows determining correlation length 
ξ4(t) as a function of temperature.

� Correlation length ξ4(t)

� Qualitatively similar to χ4(t)
� Increase of ξ4(t) as T decreases.

Lacevic et al. JCP 2003
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C) DYNAMIC HETEROGENEITIES

� Experimental and theoretical evidence:Growing dynamic length scale in 
molecular liquids and colloidal suspensions.

Berthier et al. Science 2005
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C) DYNAMIC HETEROGENEITIES

Experimental and theoretical evidence:Growing dynamic length scale in 
molecular liquids and colloidal suspensions.

� Number of dynamically correlated particles
(peak height of χ4) increases as temperature 
decreases (or relaxation time τα increases). 

� Dynamical fluctuations and correlation length
scales increase as one approaches Tg. 
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D) ISOCONFIGURATIONAL ENSEMBLE

� A. Widmer-Cooper, P. Harrowell, PRL 2004, Bertier and Lack, PRE 2007

� Idea: Study of the role of local structure when approaching the glass 
transition. As T is lowered, it becomes harder to sample all the phase 
space.

� Initial positions of particles are held fixed, but N dynamical trajectories
are independent through the use of random initial velocities. N MD runs

� Define Ci(t) a general dynamic object attached to particle isuch as:

� Isoconfigurational average 

� Equilibrium Ensemble averages 

� Dynamic propensity e.g. displacement
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D) ISOCONFIGURATIONAL ENSEMBLE

� Allows disentangling structural and dynamical sources of fluctuations through 
the definition of 3 variances over the quantity of interest C:

and:

Fluctuations of C between
different runs (dynamics)

Structura l component of the 
fluctuations (particle-to-particle
fluctuation of Ct(t)

Total amount of fluctuations.
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D) ISOCONFIGURATIONAL ENSEMBLE

Example: Dynamic propensity in liquid 
water.

� Make M IC copies of a N component water 
system.

� Define for e.g. an O atom the squared 
displacement

� The system-averaged and IC-ensemble 
averaged msd is:

� Dynamic propensity of each molecule is: 

� Potential propensity

Matharoo et al. PRE 
2006
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D) ISOCONFIGURATIONAL ENSEMBLE

Razul et al., JPCM (2011).

Lennard-
Jones 
liquid
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E) ENERGY LANDSCAPE
� Definition : Potential energy 

landscape (PEL) is V(rN) of a system 
of N particles. 

Stillinger and Weber, 1982

� While PEL does not depend on T, its  
exploration does.

� The PEL of glasses is made of 
� Distinct basins with local 

minima (inherent 
structures) of the PE.

� Saddles, energy barriers

� Decreasing temperatures reduces the 
possibility to explore parts of the 
PEL. 

Barriers of increasing heights
Too much time spent in basins

Parisi and Sciortino, Nature 2013
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E) ENERGY LANDSCAPE

� The partition functionZ of a system of N particles interacting via a two-body 
spherical potential is :

� Configuration space can be partitioned into basins. Partition function becomes 
a sum over the partition functions of the individual distinct basins Qi

� Partition function averaged over all distinct basins with the same
eIS value as

and associated average basin free energy as
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E) ENERGY LANDSCAPE

� The partition function of the system then reduces to a sum of the IS:

Ω(eIS) is the number of basins of depth eIS.

� This defines the configurational
entropy :

eIS



� Basin free energy from harmonic approximation:

� With Hiαjβ the 3N Hessian matrix:

� The partition function, averaged over eIS, can be written, with ωj the 3N 
eigenvalues associated with eIS

vibrations

� This allows separating the vibrational part of the basin free energy – kBT lnZ.
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E) ENERGY LANDSCAPE
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E) ENERGY LANDSCAPE

� A simple example : one dimensional PEL defined between 0 and L made of n 
basins, each with eIS= - 1 and size L/n: 

� Stilinger-Weber formalism will give:

� All the basins have the same depth: 
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E) ENERGY LANDSCAPE

� BKS silica: IS energies and configurational energies

F. Sciortino, J. Stat. Mech. 2005
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E) ENERGY LANDSCAPE

� Simultaneous calculation of D 
(diffusivity) and Sconf (from
PEL) shows Arrhenius 
behavior.

� Numerical validation of  the 
Adam-Gibbs relationship

Sciortino et al. Eur. Phys. J. E 2002

Sakai-Voivod, Nature 2001
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Conclusion: 

� Dynamics of glass-forming systems can be followed with numerous tools 
using computer simulations.

� Functions quantify the slowing down of the dynamics.

� Heterogeneous dynamics sets in: Non-Gaussian parameter, Four-point 
correlation functions, Isoconfigurational Ensemble

� Energy landscapes provides a thermodynamic view that connects back to the 
simple Adam-Gibbs relationship.

Next lecture (12):Ab initio simulations…a survey


