LECTURE 10 : RIGIDTY TRANSITIONS AND INTERMEDIATE PHASES

- Rigidity transitions and compositional trends
- Intermediate phases
- Cluster expansions
- MD based rigidity theory

<u>1. Remember</u> (lecture 9) the enumeration of mechanical constraints Consider a r-coordinated atom Stretching constraints α_{ij} **r**/2 Bending constraints β

Bending constraints β_{ijk}

 $2\mathbf{r}$ -3 If r=2, there is only one angle.

Each time, one adds a bond, one needs to define 2 new angles

□ We consider a system with N species of concentration n_r . The number of constraints per atom is :

$$n_{c} = \frac{\sum_{r\geq 2}^{N} n_{r} (\frac{r}{2} + (2r - 3))}{\sum_{r\geq 2}^{N} n_{r}}$$

matthieu.micoulaut@upmc.fr

2. Rigidity transition:

Amorphous silicon and harmonic potential

$$V = \frac{\alpha}{2} (\Delta l)^2 + \frac{\beta l}{2} (\Delta \theta)^2$$

$$\uparrow \qquad \uparrow$$
Stretching Bending

□ Bond depletion (<r> decreases).

the linear chain

Calculation of the eigenmodes (vibrational frequencies) of the system

matthieu.micoulaut@upmc.fr

Atomic modeling of glass – LECTURE 9 TOPOLOGY

- **D** Force acting on spring j: $F_j = -k_s (q_j q_{j-1}) k_s (q_j q_{j+1})$
- \Box Newton's law gives: $\ddot{q}_j \widetilde{\omega}^2 (q_{j-1} 2q_j + q_{j+1}) = 0$

with frequencies $\widetilde{\omega}^2 = k_s / m$

lacksquare Normal mode solution : $q_j = q_{0,j} e^{i\Omega t}$

$$\Omega^2 q_{0,j} + \widetilde{\omega}^2 (q_{0,j-1} - 2q_{0,j} + q_{0,j+1}) = 0$$

which actually reduces the problem to an **eigenvalue** (Ω) problem:

$$\begin{pmatrix} 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & 0 & 0 \\ -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & 0 \\ 0 & -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 & -\widetilde{\omega}^2 & \cdots \\ 0 & 0 & -\widetilde{\omega}^2 & 2\widetilde{\omega}^2 - \Omega^2 \\ \vdots & & \vdots & & \end{pmatrix} \begin{pmatrix} q_{0,1} \\ q_{0,2} \\ q_{0,3} \\ q_{0,4} \\ \vdots \end{pmatrix} = 0$$

 \Box More general: normal modes=eigenvalues Ω of the dynamical matrix

matthieu.micoulaut@upmc.fr

2. Rigidity transition:

- Thorpe (1983) found that bond depleted a-Si with mean coordination number <r> < 2.385 contain **zero frequency normal (floppy) modes** Ω.
- **D** Their number **f** (rank of the Ω =0 block of the dynamical matrix) scales as

$$f = 3 - N_c = 6 - \frac{5}{2} < r >$$

□ Flexible to rigid transition

- Control parameter <r>
- Order parameter f
- □ Power-law C_{ii}=(<r>-2.4)^p (p=1,5) in the stressed rigid phase. Elastic phase transition.

FIG. 1. Elastic modulus C_{11} with $\beta/\alpha = 0.2$ in units where $\alpha = 4a$ and as a function of the mean coordination $\langle r \rangle$. The three symbols are for three different series of random networks. The inset shows the number of zero-frequency modes f (averaged over three networks) compared to the result of the mean-field theory [Eq. (3)] shown by a straight line.

He and Thorpe, PRL 1985

matthieu.micoulaut@upmc.fr

Chalcogenide network glasses r(Se)=2, r(Ge)=4

Fig. 6. Dependence of molar volume on $\langle r \rangle$ for binary Ge–Se and ternary Ge–Sb–Se systems. The molar volume at room temperature for the binary and ternary are represented by **I** and **A**, respectively. The molar volume values for the binary glasses given by Ota et al. [11] are represented by **O** and those for the ternary glasses given by Savage et al. [23] are represented by Φ . The curves are drawn as a guide to the eye. The maximum measured error is 0.5%.

Fig. 10. ΔC_p versus $\langle r \rangle$ for binary Ge–Se and ternary Ge–Sb–Se systems. The ΔC_p values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 1.8%.

Fig. 4. Liquid state thermal expansion coefficient, α_L , versus $\langle r \rangle$ for the binary Ge-Se and ternary Ge-Sb-Se systems. The α_L values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 3.5%.

Boehmer and Angell, PRB 1994

matthieu.micoulaut@upmc.fr

Varshneya et al., JNCS 1991

Binary oxides : (1-x)SiO₂-xNa₂O

Depolymerization with addition of Na. $r(Q^4)=4$, $r(Q^3)=3$,

Silica and germania: rigidity under pressure under pressure

Micoulaut, Am. Mineral. 2008

Trachenko et al., PRL 2005

matthieu.micoulaut@upmc.fr

Experimentally

Picture of rigidity transitions has been changed in depth during the last decade.

Calorimetric measurements (modulated DSC)

Journal of Optoelectronics and Advanced Materials Vol. 3, Nr. 3, September 2001, p. 703 - 720

AWARD BORIS T. KOLOMIETS

DISCOVERY OF THE INTERMEDIATE PHASE IN CHALCOGENIDE GLASSES

P. Boolchand, D. G. Georgiev, B. Goodman^a

Department of Electrical and Computer Engineering and Computer Science, University of Cincinnati, Cincinnati, Ohio 45221-0030 ^aDepartment of Physics, University of Cincinnati, Cincinnati, Ohio 45221-0011

We review Raman scattering, Mössbauer spectroscopy and T-modulated Differential Scanning Calorimetry experiments on several families of chalcogenide glasses. Mean-field constraint theory, and numerical simulations of the vibrational density of state (floppy modes) in random

matthieu.micoulaut@upmc.fr

Modulated DSC and reversibility windows

Georgiev et al. PRB (2003)

 Use of modulated differential scanning calorimetry (MDSC) across the glass transition

$$\dot{H}_{T} = \dot{H}_{rev} + \dot{H}_{nonrev}$$

□ Allows for the definition of 2 heat flows

Atomic modeling of glass – LECTURE 10 RIGIDITY THEORY

Remarkable properties for selected glass compositions

- Since the RW is found between the flexible and the stressed rigid phase, it is also often called the « Intermediate phase ».
- Non-mean field phase otherwise one would have the single <r>=2.4 transitions.
- □ Central idea: stress avoidance under increasing cross-linking density. Network self-organization
- $\Box \quad \text{Nearly vanishing of } \Delta H_{nr} \text{ at Tg}$
- □ Stress free character (P_c minimum, Raman)
- □ Vibrational thresholds (Raman, IR)

Generic (chalcogenides, oxides)

[™] Wang et al., PRB 2005

matthieu.micoulaut@upmc.fr

A subject which has not been without controversy...

"Marginality of non-reversible component of complex heat flow in MDSC experiments does not necessary reflect self-organized intermediate phase." PSS 2011

« However, that (mDSC) measurement might also be subjected to a large experimental uncertainty." PRB 2009

"The observation of the reversibility window might be an experimental artifact." PRB 2009

Micoulaut, Bauchy, PSS 2013

Why has the RW been missed before ? And why are challengers missing it...and getting so annoyed ? Three experimental conditions have to be met

g. 4. Liquid state thermal expansion coefficient, α_L , versus $\langle r \rangle$ for the binary Ge–Se and ternary Ge–Sb–Se systems. The α_L values for the binary and the ternary are represented by \blacksquare and \blacktriangle , respectively. The curves are drawn as a guide to the eye. The maximum measured error is 3.5%.

Atomic modeling of glass – LECTURE 10 RIGIDITY THEORY

Ageing

Not « no ageing » but « weak ageing »

Chakravarthy et al. JPCM (2005)

Georgiev et al. JOAM (2003)

matthieu.micoulaut@upmc.fr

Fragility and relaxation

- Intermediate phase melts display anomalous relaxational properties.
 - the smallest measured fragilities (M=15). Silica (SiO₂) has M=20-28
 - > Minimum in Kohlrausch exponent β .
 - Jump distances in solid electolytes

Gunasekera et al. JCP 2013

FIG. 6. Variations in the Kohlrausch stretched exponent $\beta(x)$ as a function of the AgI concentration x in $(AgPO_3)_{1-x}$ - $(AgI)_x$ glasses.

Micoulaut, Malki, PRL 2010

matthieu.micoulaut@upmc.fr

Theory ?

- Central idea: Self-organization Stress avoidance
- Normal mode analysis of self-organized
- networks.
- Constraint counting on selective size increasing clusters
- □ MD simulations

□ Build size increasing bond models (clusters) and use constraint counting algorithms.

□ The basic level (the local structure) gives the mean-field result

Application to Ge_xSb_xSe_{1-2x}

Mean-field count gives:

 $n_c = 7x + 4.5x + 2(1 - 2x) = 2 + 7.5x$

n_c=3 for x=13.33%

matthieu.micoulaut@upmc.fr

Application to Ge_xSb_xSe_{1-2x}

□ Identify $GeSe_{4/2}$, $SbSe_{3/2}$ and Se_2 local structures

matthieu.micoulaut@upmc.fr

Application to Ge_xSb_xSe_{1-2x}

□ Three parameters (unknowns). Reduced by concentration equation:

$$P_{\text{GG}} + \frac{1}{2}P_{\text{GS}} + \frac{1}{2}P_{\text{GSb}} = x = P_{\text{SbSb}} + \frac{1}{2}P_{\text{SbS}} + \frac{1}{2}P_{\text{GSb}}$$

Self-organization. Avoid stressed rigid connections ($e_{stress}=0$). Solve concentration equation for $e_{flex}=exp[(E_{iso}-E_{flex})/k_BT]$:

$$e_{\rm flex} = \frac{2(72xe_{\rm ring} + 4 - 31x)}{3(2 - 11x)}$$

□ One obvious limit (stress transition).

$$x_{\rm c} = \frac{4}{31 - 72e_{\rm ring}}$$

□ For x < x_c, weak stress only in small rings (ES). For x>x_c, stress is dendritic and percolates (CS connections)

Application to Ge_xSb_xSe_{1-2x}

For a given set N_I of clusters of size I, floppy mode count using ring corrections

$$n_c^{(l)} = \frac{\sum_{i=1}^{\mathcal{N}_l} n_{c(i)} p_i}{\sum_{i=1}^{\mathcal{N}_l} N_i p_i}$$

Q Require $f^{(I)}=3-n_c^{(I)}=0$ (**rigidity transition** x_r).

- Threshold x_r (rigidity) is different from x_c (stress). Intermediate phase mostly isostatic.
- □ Rigidity mostly driven by the ES/CS ratio.

But not all glasses have ES structures...

D. MD BASED RIGIDITY THEORY

1. We start from the estimation of constraints:

$$n_{c} = \frac{\sum_{r \ge 2} n_{r} [r / 2 + (2r - 3)]}{\sum_{r \ge 2} n_{r}} = \frac{\overline{r}}{2} + 2\overline{r} - 3$$

Questions and limitations

Phase separation ? Isolated molecular units, As-Ge-S,...

□ Coordination number, always 8-N?

CN(Na)=5 in silicates, CN(As)=4 in certain As-Se and P-(Se,S) compositions,... Delocalisation, non-directional (ionic) bonding...

Count all interactions (constraints) ?

Broken Si-O-Na angular constraints in oxides,... Thermally activated broken constraints (Mauro-Gupta)

 \Box n_c at all thermodynamic conditions (T,P,x)

Atomic modeling of glass – LECTURE 10 RIGIDITY THEORY

2. General idea:

□ Generate atomic trajectories for a given system at (x,P,T) using Molecular Dynamics simulations (classical or First Principles)

Compute from these trajectories

1. bond-stretching (# nb of neighbours or neighbor distribution)

matthieu.micoulaut@upmc.fr

Compute from these trajectories **1. bond-bending (work on angles)**

N first neighbor distance distrib.

• N(N-1)/2 bond angles analyzed (102), (103) ... (304) ... (N-1 0 N)

Peugeot labelling

• Not all are independent !

Estimate of bond-bending from <u>partial bond angle</u> <u>distribution (PBAD) $P_i(\theta)$ </u>

with i<N(N-1)/2 arbitrary for a given atomic j0k triplet

•Splitting the BAD into contributions from neighbours. •Compute the second moment (σ_t , sometimes fwhm) of each PBA Distribution.

$$\langle \theta_i^2 \rangle = \int \theta^2 P_i(\theta) d\theta \qquad \sigma_i^2 = \langle \theta_i^2 \rangle - \langle \theta_i \rangle^2$$

matthieu.micoulaut@upmc.fr

Ge-centred PBAD in GeO₂ for arbitrary N=6

matthieu.micoulaut@upmc.fr

Ge-centred PBAD in GeO₂ for arbitrary N=6

Large $\sigma_{\theta ij}$: broken constraint. Weak restoring force that maintains a mean angle fixed

matthieu.micoulaut@upmc.fr

Large O-centred angular motion Tetrahedral angle (109°) well defined

GeSe₂

Bimodal (ES vs CS) Se-centred distribution Tetrahedral angle well defined and broader

Standard deviations for tetrahedral network glasses

•Angular counting from MD matches direct Maxwell counting

- 6 Ge,Si angles have a low standard deviation (but only 5 independent)
- Equivalent tetrahedral anglular excursion in oxides (rigid tetrahedron).
- \bullet Increased angular distorsion in chalcogenides (σ is not constant).
- 1 Se angle with a low σ in GeSe₂

matthieu.micoulaut@upmc.fr

Standard deviations and rigidity transitions

•**Rigidity (increasing Ge) affects mostly the Ge intra-tetrahedral motion.** Stress transition leads to an asymetric intra-tetrahedral angular motion involving the neighbour 4. Weak changes in σ_{se}

•Flexible GeSe₉ and IP GeSe₄ and GeSe₃: similar to oxides: σ=const, rigid tetrahedra

matthieu.micoulaut@upmc.fr

matthieu.micoulaut@upmc.fr

During the time trajectory , evaluate for each BO-centred angle a BAD.

Compute its second moment $\boldsymbol{\sigma}.$

-> Distribution of standard deviations f(σ) after

Ensemble average the whole system.

- **Low Temperature:** distribution centred at low σ: intact constraints
- High temperature: distribution centred at large σ: broken constraints
- □ Numerical basis for the empirical Mauro-Gupta function (lecture 9): $q(T) = \left[1 - \exp\left(-\frac{\Delta F^*}{LT}\right)\right]$

matthieu.micoulaut@upmc.fr

1000

2000

T (K)

3000

4000

5000

 νt_{obs}

Effect of pressure: evidence for the intermediate phase from MD

Extending the Mauro-Gupta function from q(T) to q(T,P)

Distributions of the standard deviation of BO angles for increasing pressure

 \Box Collapse of the broken BB contribution at large σ .

 \Box Drift of the $\sigma i = \sigma(intact)$ du to the presence of stress.

matthieu.micoulaut@upmc.fr

Population of intact BB constraints q(P,T)

Softening of the BB constraint of the BO to avoid pressure-induced stress (increase in Si connectivity Si^{IV}->Si^V->Si^{VI}).

- Adaptation only possible up to a certain point in P.
- Pressure analogue of the network self-organization (intermediate phase)

Link with transport properties

Diffusion (msd) and viscosity (Green-Kubo, Stress auto-correlation)

- minimum of viscosity

- maximum of O diffusion

(similar features as d-SiO₂, H_2O , Debenedetti, 2000)

Correlation of the q(P) minimum window with transport properties anomalies

Atomic modeling of glass – LECTURE 10 RIGIDITY THEORY

Link with transport properties

Diffusion (msd) and viscosity (Green-Kubo, Stress auto-correlation)

• Minimum of the activation energies (D,η) in the same pressure window 2 < P < 12 Gpa.

matthieu.micoulaut@upmc.fr

Conclusion:

- Rigidity transitions provide an interesting framework for the understanding of compositional trends in glasses
- □ Adaptative Intermediate phase with surprising properties (ongoing research). Design new applications ?
 - Weak ageing phenomena
 - Space-filling tendencies
 - Fragility anomaly
 - Stress-free character
 - Experimental challenge (sample preparation)
- □ Cluster models capture salient features of the IP
- MD based constraint theory leads to an atomic scale insight and links with properties (viscosity, diffusivity anomalies, etc.)

Next lecture (11): Dynamics and glass transition

matthieu.micoulaut@upmc.fr