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Oxidation of Silicon
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Oxidation of Silicon

Si is oxidized to form amorphous SiO2 at high 
temperature in dry (O2) atmosphere or wet (H2O) 
atmosphere.
The oxidation kinetics follows the linear-parabolic law at 
a constant temperature.

x0
2 +Ax0 = B(t + )

where x0: SiO2 film thickness
t: heat-treatment time; : off-set time 
B: parabolic rate constant; B/A: linear rate constant

Deal and Grove, J. Appl. 36 (1965) 3770.
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Oxidation of Silicon

X0 = - A + Bt/x0

Wet (95ºC H2O) 

oxidation,  = 0

Deal and Grove
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Oxidation of Silicon

Traditionally 

Linear growth is attributed to 

the interface reaction-controlled 

process. 

Parabolic growth is attributed to 

diffusion-controlled process. 

Diffusing species are H2O in 

wet and O2 in dry.

B.F. Deal and A.S. Grove, J. 

Appl. Phys. 36, 3770 (1965).



Rensselaer Polytechnic Institute
17th University Conference, Penn State, June 2005 6

Oxidant pressure effect

Parabolic rate constant, B, is 

proportional to vapor 

pressure.

Linear rate constant B/A is 

proportional to vapor 

pressure. (Deal and Grove); 

or proportional to square 

root of vapor pressure 

(Deal, Hess, Plummer and 

Ho,  J. Electrochem. Soc., 

125, 339)
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Parabolic rate constant 

B =2DC*/N; N: number of oxidant in a unit volume of 
SiO2 (Deal and Grove) and D: Diffusion coefficients
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Anomalous phenomena related to S/SiO2

Wet oxidation is faster than dry oxidation even though 
the diffusion coefficient of water appears smaller than
that of oxygen.

Origin of linear rate constant—reaction rate of Si with 
oxidant is fast. (Doremus, JAP, 66 (1989)4441; Mott, 
Rigo and Rochet, Philo. Mag. B, 60 (1989) 189;
Bongiorno and Pasquarello, Phys. Rev. Letters, 93 
(2004) 086102).

Oxidation rate is slower for nano-Si.

Oxidation rate depends upon the orientation of Si crystal.
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Oxidation of nano-silicon 

SiO2 film growth rate is 
slower for smaller 
silicon particles

R. Okada and S. IIjima, 

Appl. Phys. Letters, 58, 

1662 (1991).
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Oxidation rate of Si with curved surface 

Kao, McVittie, Nix, and Saraswat, IEEE 

ED-35, 25(1988).
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Effect of Si crystal orientation

on oxidation rate

Lewis and Irene

J. Electrochem. Soc., 134 

(1987) 2332. Oxidation rate: 

(111)>(110)>(100)

Deal, J. Electrochem. Soc.125 

(1978)576.
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Expected water (H2O and OH) 

diffusion profiles

Water diffusion, 1000ºC,  
355 Torr water vapor, 1 h.
H2O +SiO2  2SiOH

H2O diffuses and reacts 
with SiO2 to form SiOH.
If the reaction equilibrium 
holds strictly, H2O and OH 
(solid line) should have 
same depth of diffusion.
If H2O is not restricted by 
the equilibrium, it can 
diffuse deeper.
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Diffusion coefficient and solubility
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18O2 diffusion during Si oxidation

Stedile, Baumvol, Oppenheim, Trimaille, 

Ganem and Rigo, Nucl. Inst. Method in 

Phys. Res. B 118 (1996) 493.

Treatment in 16O2 Followed by 18O2

Han and Helms, JAP, 59 

(1986)1768.
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Apparent diffusion coefficient of 18O as a 

function of water vapor pressure

Farver and Yund, 
Chem. Geology, 90 
(1991) 55. Quartz:

Similar analysis was 
made for SiO2 film
By Doremus in Diffusion 

of Reactive Molecules in 

Solids and Melts, Wiley 

(2002).
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IR absorption of amorphous SiO2 film

Absorbance of IR SiO2 structural bands can be used to 
determine SiO2 film thickness.
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IR peak wavenumber silica structural 

band and thickness of SiO2 films
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Peak wavenumber of IR SiO2 structural band 

IR Peak wavenumber can change with
1. SiO2 fictive temperature—small effect

~0.006 cm-1 /100ºC change of Tf at 1200 cm-1 peak.

2. Stress (density change)-intermediate effect 
<1 cm-1/GPa
91 cm-1 shift for 1 g/cm3 density change.
High density of 2.4 g/cm3 for 1.5 nm film was 
reported. 18 cm-1 for 0.2 g/cm3 change.

3. Non-soichiometry-large effect
~50 cm-1 decrease for x= 2 1.5 in SiOx
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Fictive temperature effect on IR silica 

structural band peak wavenumber
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Effect of non-stoichiometry on IR silica 

structural band peak wavenumber

P.G. Pai, S.S. Chao, Y. Takagi, 

and G. Lucovsky, J. Vacuum 

Sci. Technol. 4, 689 (1986).
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IR peak wavenumber at Si/SiO2 interface

R.A.B. Devine, Appl. 

Phys. Lett., 68, 3108 

(1996).

At the interface the 

composition is 

estimated to be SiO1.45
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Si/SiO2 interface structure

Himpsel, McFeely, 

Taleb-Ibrahimi and 

Yarmoff, Phys. Rev. B 

38 (1988) 6084.

Core-level 

spectroscopy with 

Synchrotron radiation
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Si/SiO2 interface structure

Bongiorno and Pasquarello, Appl. Surf. Sci. 234 (2004) 190.

Atomistic  model based upon experimental data

Three atomic layers average SiO1.46 (exp. SiO1.70, SiO1.43)



Rensselaer Polytechnic Institute
17th University Conference, Penn State, June 2005 24

Si/SiO2 interface

Gusev, Lu, Gustafsson, and 

Garfunkel, Phys. Rev. B

52 (1995) 1753. 

From medium-energy ion scattering

Iwata and Ishizaka, J. Appl. 

Phys. 79 (1996) 6653. (from 

ESCA data)
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Si/SiO2 interface structure

Grovenor and Cerezo, J. Appl. Phys. 65 (1989) 5089.

Room temperature air, after HF cleaning.

Pulse laser atom probe microanalysis.
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Si/SiO2 interface structure

Johannessen and Spicer, and Spicer, JAP, 47 (1976) 3028. 

Auger Analysis.
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Phase separation of Si/SiO2 (Ge/GeO2) system

Schmure et al., J. Non-

Cryst. Solids, 336 (2004) 1.

Trumbone et al. J. Chem.

Phys. 24 (1956) 1112.
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Phase Separation of a-SiO

Hohl, Wieder, van Aken, Weirich, Denninger, Vidal, Oswald, Deneke, Mayer 

and Fuess, J. Non-Cryst. Solids, 320 (2003) 255. 

Black: Si

Gray: Suboxide, SiOx

Light Gray: SiO2
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Coherent and Incoherent boundary

After W.D. Callister, Jr. Fundamental of Materials Science

And Engineering (2001)
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Si/SiO2 interface

Pasquarello, Hybestsen and Car, Nature, 396 (1998) 58.

Si(001)-SiO2,     : Si,      : O
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Effect of coherent energy on phase diagram 

V: molar volume.

z: mol fraction of one phase

ε: linear mismatch between phases

Cahn and Larche, Acta Met. 32 (1984) 1915.

A = 4VEε2/[(1-ν)F”(Ce
β – Ce

a )2]; Elastic energy Fe = z(1-z)VEε2/(1-ν)
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Schematic free energy diagram

Williams, R.O, Met. Trans, 11A (1980) 247.
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Coherency strain energy

Ohdomari, Akatgsu, Yamakoshi and Kishimoto, J. Non-Crystalline 

Solids, 89 (1987) 239. (100)>(110)>(111).  

High energy (100) plane tends to create (111) surfaces.
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Effect of oxygen deficiency on 

oxidant diffusion

Oxidation of Si is controlled by the transport of 
oxidant (O2 or H2O) through the oxide film being 
formed. Oxygen deficiency at the interface 
becomes diffusion traps of these oxidants, slowing 
down the diffusion. 
Flux at the interface, J1.
Flux in the bulk of the film, J2.

For thin films, interface flux is important  a linear 
growth.
When the film become thicker, bulk flux becomes 
important  parabolic growth.
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Effect of oxygen vacancy on

oxidant diffusion

 Oxygen deficiency ≈ Oxygen 
vacancy  ≈ Silicon suboxide  
(SiOx, 1<x<2).

 SiOx coating on SiO2 glass 
can reduce mechanical fatigue 
of the glass.

 Vacancy annihilation by water 
diffusion.

 Oxygen vacancies serve as 
oxidant diffusion traps and 
diffusion barriers.

Tomozawa, Han and Davis, 

SPIE 1590 (1991) 160.
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Oxygen vacancy annihilation process

by oxidants

(1/2) O2 + ΞSi – SiΞ  ΞSiOSiΞ

K1 = CSiOSi/(CO2
1/2 CV)

∂CO2/∂t - ∂CV/ ∂t = ∂[DO2∂C/∂x]∂x

H2O + ΞSi – SiΞ  ΞSiOH 

+HSiΞ

(SiOH + SiH--> SiOSi +H2)

K2= CSiHCSiOH/CH2OCV

∂CH2O/∂t + ∂CSiOH/∂t = 

∂[DH2O∂CH2O/∂x]∂x
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Oxidant diffusion and reaction

Effective diffusion coefficient, 

Deff = DO2/[1 + (CV/4CO2)] ≈ DO2/(CV/4CO2)

J1 = J2 DC0/(x-δ) = Deff Ci/δ = N (∂x0/∂t)

x0
2 + 2[(DO2/Deff) – 1]N δx0

= 2(DO2C0/N)t + [(2DO2/Deff) – 1]δ2

Similar to Deal and Grove equation, x2 + Ax = B (t +)

With B = 2DO2CO2/N

B/A = C0/{N [(1/Deff) – (1/D)] δ} ≈ C0Deff/(N δ )

Similar equations for wet (H2O) oxidation.
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Effect on electrical properties

Iwata and Ishizaka, J. Appl. 

Phys. 79 (1996) 6653. 

Si-Si is responsible-Hasegawa 

et al., J. Electrochem. Soc. 142 

(1995) 273.

Callister, Fundamental of Materials 

Science and Engineering, Wiley 

(2001).
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Effect on electrical properties

Szedon and Sandor, Appl. Phys. 

Letters, 6 (1965) 181.

Before and after electron irradiation.

Warren et al, APL, 64 (1994) 3452…

O vacancies are the dominant hole 

trappping sites.

Si band diagram 

with hole traps. 

Woods and 

Williams, JAP, 47 

(1976) 1082.
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Effect on optical properties

Futagi, Matsumoto and Mimura, Phys. 

Rev. B 49 (1994) 14732.

PL of oxidized porous Si. Excited with 

325 nm. Oxide formed at lower 

temperature contains OH.
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Effect on optical properties

Photoluminescence and electo-

Luminescence, SiO1.4 film prepared by 

rf sputtering, heated at 500ºC. PL 

excited with 351 nm. PL: blue and 

EL:red.



Rensselaer Polytechnic Institute
17th University Conference, Penn State, June 2005 42

Conclusions

 It is suggested that the linear growth of silica by 

oxidation of silicon is due to the diffusion and 

reaction process at the Si/SiO2. The oxygen vacancies 

in SiO2-x at the Si/SiO2 interface work as the oxidant 

diffusion traps. The slow oxidation rate of nano-

silicon and effect of different Si crystalline 

orientation can be attributed to different oxygen 

vacancy concentration at the interface.

 Oxygen vacancy influences both optical and electrical 

properties of Si/SiO2 systems.
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