

An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference

OXIDATION OF Si: Role of Si/SiO₂ INTERFACE

M. Tomozawa and S.-R. Ryu Materials Science and Engineering Department Rensselaer Polytechnic Institute Troy, NY 12180-3590 USA

Rensselaer Polytechnic Institute

17th University Conference, Penn State, June 2005

Rensselaer Polytechnic Institute

Si is oxidized to form amorphous SiO_2 at high temperature in dry (O_2) atmosphere or wet (H_2O) atmosphere.

The oxidation kinetics follows the linear-parabolic law at a constant temperature.

$$x_0^2 + Ax_0 = B(t + \tau)$$

where x_0 : SiO₂ film thickness t: heat-treatment time; τ : off-set time B: parabolic rate constant; B/A: linear rate constant

Deal and Grove, J. Appl. 36 (1965) 3770.

$$X_0 = -A + Bt/x_0$$

Wet (95°C H_2O) oxidation, $\tau = 0$

Deal and Grove

17th University Conference, Penn State, June 2005

Traditionally

Linear growth is attributed to the interface reaction-controlled process.

Parabolic growth is attributed to diffusion-controlled process. Diffusing species are H_2O in wet and O_2 in dry.

B.F. Deal and A.S. Grove, J. Appl. Phys. 36, 3770 (1965).

Oxidant pressure effect

Parabolic rate constant, B, is proportional to vapor pressure.

Linear rate constant B/A is proportional to vapor pressure. (Deal and Grove); or proportional to square root of vapor pressure (Deal, Hess, Plummer and Ho, J. Electrochem. Soc., 125, 339)

Rensselaer Polytechnic Institute

17th University Conference, Penn State, June 2005

Parabolic rate constant

 $B = 2DC^*/N$; N: number of oxidant in a unit volume of SiO₂ (Deal and Grove) and D: Diffusion coefficients

17th University Conference, Penn State, June 2005

Wet oxidation is faster than dry oxidation even though the diffusion coefficient of water appears smaller than that of oxygen.

Origin of linear rate constant—reaction rate of Si with oxidant is fast. (Doremus, JAP, 66 (1989)4441; Mott, Rigo and Rochet, Philo. Mag. B, 60 (1989) 189; Bongiorno and Pasquarello, Phys. Rev. Letters, 93 (2004) 086102).

Oxidation rate is slower for nano-Si.

Oxidation rate depends upon the orientation of Si crystal.

Oxidation of nano-silicon

SiO₂ film growth rate is slower for smaller silicon particles

R. Okada and S. IIjima, Appl. Phys. Letters, 58, 1662 (1991).

Rensselaer Polytechnic Institute

9

17th University Conference, Penn State, June 2005

Oxidation rate of Si with curved surface

Kao, McVittie, Nix, and Saraswat, IEEE ED-35, 25(1988).

Effect of Si crystal orientation on oxidation rate

Deal, J. Electrochem. Soc.125 (1978)576.

Rensselaer Polytechnic Institute

17th University Conference, Penn State, June 2005

Expected water (H₂O and OH) diffusion profiles

Water diffusion, 1000°C, 355 Torr water vapor, 1 h. $H_2O + SiO_2 \leftrightarrow 2SiOH$ H₂O diffuses and reacts with SiO₂ to form SiOH. If the reaction equilibrium holds strictly, H₂O and OH (solid line) should have same depth of diffusion. If H₂O is not restricted by the equilibrium, it can diffuse deeper.

17th University Conference, Penn State, June 2005

Diffusion coefficient and solubility

Rensselaer Polytechnic Institute

¹⁸O₂ diffusion during Si oxidation

DEPTH (ANGSTROMS)

Stedile, Baumvol, Oppenheim, Trimaille, Ganem and Rigo, Nucl. Inst. Method in Phys. Res. B 118 (1996) 493. Treatment in ${}^{16}O_2$ Followed by ${}^{18}O_2$

Han and Helms, JAP, 59 (1986)1768.

Apparent diffusion coefficient of ¹⁸O as a function of water vapor pressure

Farver and Yund, Chem. Geology, 90 (1991) 55. Quartz:

Similar analysis was made for SiO2 film By Doremus in <u>Diffusion</u> of Reactive Molecules in Solids and Melts, Wiley (2002).

IR absorption of amorphous SiO₂ film

Absorbance of IR SiO_2 structural bands can be used to determine SiO_2 film thickness.

17th University Conference, Penn State, June 2005

IR peak wavenumber silica structural band and thickness of SiO₂ films

Rensselaer Polytechnic Institute

Peak wavenumber of IR SiO₂ structural band

IR Peak wavenumber can change with

- 1. SiO₂ fictive temperature—small effect ~0.006 cm⁻¹ /100°C change of T_f at 1200 cm⁻¹ peak.
- Stress (density change)-intermediate effect <1 cm⁻¹/GPa
 91 cm⁻¹ shift for 1 g/cm³ density change. High density of 2.4 g/cm³ for 1.5 nm film was reported. 18 cm⁻¹ for 0.2 g/cm³ change.
- 3. Non-soichiometry-large effect ~50 cm⁻¹ decrease for $x = 2 \rightarrow 1.5$ in SiO_x

Fictive temperature effect on IR silica structural band peak wavenumber

Rensselaer Polytechnic Institute

Effect of non-stoichiometry on IR silica structural band peak wavenumber

P.G. Pai, S.S. Chao, Y. Takagi, and G. Lucovsky, J. Vacuum Sci. Technol. 4, 689 (1986).

17th University Conference, Penn State, June 2005

IR peak wavenumber at Si/SiO₂ interface

^{17&}lt;sup>th</sup> University Conference, Penn State, June 2005

Si/SiO₂ interface structure

Himpsel, McFeely, Taleb-Ibrahimi and Yarmoff, Phys. Rev. B 38 (1988) 6084. Core-level spectroscopy with Synchrotron radiation

17th University Conference, Penn State, June 2005

Si/SiO₂ interface structure

Bongiorno and Pasquarello, Appl. Surf. Sci. 234 (2004) 190. Atomistic model based upon experimental data Three atomic layers average SiO_{1 46} (exp. SiO_{1 70}, SiO_{1 43})

17th University Conference, Penn State, June 2005

Si/SiO₂ interface

17th University Conference, Penn State, June 2005

Si/SiO₂ interface structure

Grovenor and Cerezo, J. Appl. Phys. 65 (1989) 5089. Room temperature air, after HF cleaning. Pulse laser atom probe microanalysis.

Rensselaer Polytechnic Institute 25

Si/SiO₂ interface structure

Johannessen and Spicer, and Spicer, JAP, 47 (1976) 3028. Auger Analysis.

17th University Conference, Penn State, June 2005

Phase separation of Si/SiO₂ (Ge/GeO₂) system

Schmure et al., J. Non-Cryst. Solids, 336 (2004) 1.

Trumbone et al. J. Chem. Phys. 24 (1956) 1112.

17th University Conference, Penn State, June 2005

Phase Separation of a-SiO

Hohl, Wieder, van Aken, Weirich, Denninger, Vidal, Oswald, Deneke, Mayer and Fuess, J. Non-Cryst. Solids, 320 (2003) 255.

Coherent and Incoherent boundary

After W.D. Callister, Jr. <u>Fundamental of Materials Science</u> <u>And Engineering (2001)</u>

17th University Conference, Penn State, June 2005

Si/SiO₂ interface

Pasquarello, Hybestsen and Car, Nature, 396 (1998) 58. Si(001)-SiO₂, \bigcirc : Si, \bigcirc : O

17th University Conference, Penn State, June 2005

Effect of coherent energy on phase diagram

Cahn and Larche, Acta Met. 32 (1984) 1915. $A = 4V E\epsilon^2 / [(1-\nu)F''(C_{\beta}^e - C_{\alpha}^e)2]; Elastic energy F_e = z(1-z)V E\epsilon^2 / (1-\nu)$

V: molar volume.z: mol fraction of one phaseε: linear mismatch between phases

Rensselaer Polytechnic Institute 31

Schematic free energy diagram

Williams, R.O, Met. Trans, 11A (1980) 247.

17th University Conference, Penn State, June 2005

Coherency strain energy

Ohdomari, Akatgsu, Yamakoshi and Kishimoto, J. Non-Crystalline Solids, 89 (1987) 239. (100)>(110)>(111). High energy (100) plane tends to create (111) surfaces.

17th University Conference, Penn State, June 2005

Effect of oxygen deficiency on oxidant diffusion

Oxidation of Si is controlled by the transport of oxidant (O_2 or H_2O) through the oxide film being formed. Oxygen deficiency at the interface becomes diffusion traps of these oxidants, slowing down the diffusion. Flux at the interface, J_1 . Flux in the bulk of the film, J_2 .

For thin films, interface flux is important \Rightarrow a linear growth. When the film become thicker, bulk flux becomes important \Rightarrow parabolic growth.

17th University Conference, Penn State, June 2005

Effect of oxygen vacancy on oxidant diffusion

- Oxygen deficiency \approx Oxygen vacancy \approx Silicon suboxide (SiO_x, 1<x<2).
- SiO_x coating on SiO₂ glass can reduce mechanical fatigue of the glass.
- Vacancy annihilation by water diffusion.
- Oxygen vacancies serve as oxidant diffusion traps and diffusion barriers.

Tomozawa, Han and Davis, SPIE 1590 (1991) 160.

17th University Conference, Penn State, June 2005 Rensselaer Polytechnic Institute

Oxygen vacancy annihilation process by oxidants

(1/2) $O_2 + \Xi Si - Si\Xi \leftrightarrows \Xi SiOSi\Xi$ $K_1 = C_{SiOSi} / (C_{O2}^{1/2} C_V)$

 $\partial C_{O2}/\partial t - \partial C_{V}/ \ \partial t = \partial [D_{O2}\partial C/\partial x]\partial x$

$$H_2O + \Xi Si - Si\Xi \leftrightarrows \Xi SiOH$$

+HSiΞ
(SiOH + SiH--> SiOSi + H_2)
 $K_2 = CSiHCSiOH/C_{H2O}C_V$

 $\partial C_{H2O} / \partial t + \partial C_{SiOH} / \partial t =$

Oxidant diffusion and reaction

Effective diffusion coefficient,

$$\begin{split} D_{eff} &= D_{O2} / [1 + (C_V / 4C_{O2})] \approx D_{O2} / (C_V / 4C_{O2}) \\ J_1 &= J_2 \qquad DC_0 / (x - \delta) = D_{eff} Ci / \delta = N \ (\partial x_0 / \partial t) \\ x_0^2 + 2[(D_{O2} / D_{eff}) - 1] N \ \delta x_0 \\ &= 2(D_{O2} C_0 / N)t + [(2D_{O2} / D_{eff}) - 1] \delta^2 \end{split}$$

Similar to Deal and Grove equation, $x^2 + Ax = B(t + \tau)$

With $B = 2D_{O2}C_{O2}/N$

$$B/A = C_0 / \{N [(1/_{Deff}) - (1/D)] \delta\} \approx C_0 D_{eff} / (N \delta)$$

Similar equations for wet (H_2O) oxidation.

17th University Conference, Penn State, June 2005

Effect on electrical properties

Iwata and Ishizaka, J. Appl. Phys. 79 (1996) 6653. Si-Si is responsible-Hasegawa et al., J. Electrochem. Soc. 142 (1995) 273.

Callister, <u>Fundamental of Materials</u> <u>Science and Engineering</u>, Wiley (2001).

Effect on electrical properties

Szedon and Sandor, Appl. Phys.
Letters, 6 (1965) 181.
Before and after electron irradiation.
Warren et al, APL, 64 (1994) 3452...
O vacancies are the dominant hole trappping sites.

Si band diagram with hole traps. Woods and Williams, JAP, 47 (1976) 1082.

17th University Conference, Penn State, June 2005

Effect on optical properties

Futagi, Matsumoto and Mimura, Phys.Rev. B 49 (1994) 14732.PL of oxidized porous Si. Excited with 325 nm. Oxide formed at lower temperature contains OH.

Effect on optical properties

Photoluminescence and electo-Luminescence, $SiO_{1.4}$ film prepared by rf sputtering, heated at 500°C. PL excited with 351 nm. PL: blue and EL:red.

Rensselaer Polytechnic Institute

Conclusions

- It is suggested that the linear growth of silica by oxidation of silicon is due to the diffusion and reaction process at the Si/SiO₂. The oxygen vacancies in SiO_{2-x} at the Si/SiO₂ interface work as the oxidant diffusion traps. The slow oxidation rate of nanosilicon and effect of different Si crystalline orientation can be attributed to different oxygen vacancy concentration at the interface.
- Oxygen vacancy influences both optical and electrical properties of Si/SiO₂ systems.

17th University Conference, Penn State, June 2005

Acknowledgement

Financial support of NSF under contract, DMR-0352773.

We appreciate discussion with Professor R.H. Doremus of Rensselaer Polytechnic Institute

17th University Conference, Penn State, June 2005