

An IMI Video Reproduction of Invited Lectures from the 17th University Glass Conference

NOVEL PROPERTIES OF GLASS-METAL NANOCOMPOSITES

D.CHAKRAVORTY

Unit on Nano Science and Technology Indian Association for the Cultivation of Science Kolkata 700032,India

Acknowledgment:

S.Basu, P.K.Mukherjee, S.K.Saha, B.N.Pal, A.Dan, S.Bhattacharya, Supriya Chakraborty Department of Science and Technology, New Delhi Indian National Science Academy, New Delhi

- Glass-Ceramics —> Template for nano metal growth.
- Silver nanowires in gel derived silica glass —> Single electron tunneling
- Silver nanowires in fluorophlogopite mica glassceramics —> Giant dielectric permittivity
- Metal core-metal oxide shell nanostructure in silica glass ----> Interfacial amorphous phase
- Glass-Ceramic- metal nanocomposites Large Relative Humidity Sensitivity
- Silicate glass with nano metal arrays

Diode- like behaviour

Size distribution of Silver Particles Synthesized by ion exchange and reduction(873K for ½ hr) in a glass of Composition 55SiO₂,32.2 LiO₂,12 ZnO,0.8P₂O₅

$$\Delta n = \frac{1}{\sqrt{2\pi} \cdot \ln \sigma} \exp\left\{-\frac{1}{2} \left(\ln(\frac{x}{\overline{x}})/\ln \sigma\right)^2\right\} \Delta(\ln x)$$

Glass-Crystalline Metal at

Electron Tunnelling between Metal Islands *Neugebauer and Webb model:*

 $\rho \propto \exp(2\alpha s + E/kT)$

 α : Tunnelling exponent (

$$= \left(\frac{2m\phi}{\hbar^2}\right)^{1/2} \quad \sum$$

- s : Inter-Grain distance
- E : Energy to charge a grain

 ϕ : Effective barrier height

$$E = \frac{e^2}{2\pi\varepsilon\varepsilon_0} \left(\frac{1}{r} - \frac{1}{r+s}\right) \quad \text{(Tick and Fehlner 1972)}$$

- e : electronic charge
- r : metal grain radius
- ϵ : dielectric constant of matrix
- ϵ_0 : dielectric permittivity of free

space

NANOWIRES IN SILICA GEL NANOPORES

SILVER NANOWIRES IN SILICA GEL

TEM for silica gel heat at 723K/6h.soaked AgNO3 and Subjected to electrodiposition

SILVER NANOWIRES IN SILICA GEL

SILVER NANOWIRES WITH BREAK JUNCTION IN SILICA GEL

BHATTACHARYYA et. al. Appl. Phys. Lett 77 3770 (2000)

GROWTH OF SILVER NANOWIRES IN NANO CHANNELS OF FLUOROPHLOGOPITE MICA ($KMg_3AISi_3O_{10}F_2$)

GROWTH OF SILVER NANOWIRES IN NANO CHANNELS OFFLUOROPHLOGOPITE MICA

Crystal Channels as Templates for Growing Nanowires

GLASS CERAMICS WITH FLUOROPHLOGOPITE MICA

SEM

NANOWIRES IN GLASS CERAMICS CONTAINING FLUOROPHLOGOPITE MICA

NANOWIRES IN GLASS CERAMICS CONTAINING FLUOROPHLOGOPITE MICA

Interplanar spacing d_{hkl} Specimen heat treated at 1165 K / 2 hr +ion exchanged at 573 K / 24 hr

Experimental value Specimen heat treated at 1163K for 2 hr.and ion exchanged at 573 K for 24 hr.	Standard X-ray data for K Mg $_3$ Al Si $_3$ O $_{10}$ F $_2$
(nm)	(nm)
1.0769	0.996 (001)
0.4666	0.459 (020)
0.375	0.365 (112)
0.304	0.313 (112)
0.250	0.249 (131)

GROWTH OF SILVER NANO PARTICLES IN GLASS CERAMICS CONTAINING FLUORPHLOGOPITE MICA

GLASS COMPOSITION 47 SiO₂ 15 B₂O₃ 12Al₂O₃ 10 MgO 10 K₂O 6KF

SILVER NANOWIRES IN GLASS CERAMICS CONTAINING FLUOROPHLOGOPITE MICA

SILVER NANOWIRES IN GLASS CERAMICSCONTAINING FLUOROPHLOGOPITE MICA

SCHEMATIC OF BREAK JUNCTIONS

MUKHERJEE AND CHAKRAVORTY J. Mater. Res., 17 3127 (2002)

SILVER NANOWIRES IN MICA CHANNELS– ULTRA HIGH DIELECTRIC PERMITTIVITY

SPACE CHARGE POLARIZATION MODEL FAILS TO EXPLAIN HIGH ε MECHANISM IS ELECTRONIC INTERRUPTED STRAND MODEL (RICE & BERNASCONI, 1972, PRL)

$$\varepsilon \cong 1/2(q_s l_0)^2$$

 $\mathbf{l_0}$: STRAND LENGTH ; $\mathbf{l_0}$ = 1287 nm

 $\mathbf{q}_{\mathbf{s}}$: FERMI THOMAS SCREENING WAVE VECTOR OF CONDUCTION ELECTRONS

 $\mathbf{q_s} \sim a^{-1}$ FOR METALLIC DENSITIES; FOR $\epsilon \sim 10^7$ AND a = 0.28 nm

IN AGREEMENT WITH MICA CRYSTALLITE DIMENSIONS

COPPER CORE COPPER OXIDE SHELL – INTERFACIAL AMORPHOUS PHASE

Preparation : Terget gel composition 60 CuO. 40 SiO₂ (mole%)

Precursors : $CuCl_2$. $2H_2O$, $Si(OC_2H_5)_4$ Solⁿ: 60 ml C_2H_5OH , 10 ml dist H_2O , 1 ml HCL, 125 ml Si $(OC_2H_5)_4$

COPPER CORE COPPER OXIDE SHELL – INTERFACIAL AMORPHOUS PHASE

SPECIMEN REDUCED AT923K / 30MIN + OXIDIZED AT 823K / 30MIN

COPPER CORE COPPER OXIDE SHELL-INTERFACIAL AMORPHOUS PHASE

Variation of log resistivity as a function of inverse temperature for different samples.

Das/Chakravorty Appl.Phys.Lett. 76, 1273 (2000)

COPPER CORE COPPER OXIDE SHELL – INTERFACIAL AMORPHOUS PHASE

NORMALIZED PLOTS OF M` AND M`` SPECIMEN REDUCED AT 923K / 30 MIN + OXIDIZED AT 723K / 30 MIN

KWW FUNCTION : $F(t) = \exp[-(t/\tau_R)^{\beta}]$

COPPER CORE COPPER OXIDE SHELL – INTERFACIAL AMORPHOUS PHASE

Model	N/Wt	8.	10 ⁻⁵ a ₂	$\frac{10^8}{(s)} \tau_o$	82	8.00.0	$10^5 A_{ec}$	Var	1005	-FOF
		PL	P0	()	-Tim	- C las		7 SL		- 4-
CK1	12/P	$\{0.191\}$	3.42	[0.013]	72.5	0.754			2.98	89
CK1	12/M	$\{0.190\}$	3.33	[0.009]	74.1	0.602			2.34	124
CK1	10/P	[0.450]	3.05	[17.3]	{56.8}	16.3			1.87	96
CK1	10/M	$\{0.371\}$	3.04	[5.50]	{64.7}	8.49			1.52	119
CK1	$10/\mathbb{P}$	(2/3)	3.06	135	{11.4}	66.0			2.60	83
CK1	10/M	(2/3)	3.02	118	{19.7}	58.7			1.93	114
CK1S	10/M	(2/3)	2.49	[59.5]	56.0	35.9	{1.17}	0.66	0.84	141
CK1S	10/M	0.676	2.55	68.3#	51.3#	39.6	(1.81)	0.64	0.90	138
CK1	10/P	(1/3)	3.10	2.94	65.8	6.43			1.97	94
CK1	10/M	(1/3)	3.06	2.67	67.4	5.90			1.53	120
CK1S	10/M	(1/3)	2.58	$\{1.40\}$	82.0	3.96	{1.53}	0.65	0.90	137
CK1S	10/M	0.438	2.57	8.56	76.4	9.92	(1.53)	0.66	0.77	143
CK1S	12/P	0.333	2.82	2.14	73.9	5.14	[1.42]	0.70	2.03	106
CK1S	12/P/Y	$\{0.331\}$	2.97	[2.46]	{69.8}	5.90	[1.58]	$\{0.73\}$	2.03	106

Macdonald Basu Chakravorty, J.Chem. Phys. 122, 241703,(2005)

Fe - Fe₃O₄ - SiO₂ Gel Nanocomposites

Target Composition :55 Fe₂O₃. 45 SiO₂ (mol %) Solⁿ A :60 ml C₂H₅OH, 10ml H₂O, 23.17 gm FeCl₃ Solⁿ B :90 ml C₂H₅OH, 15ml H₂O, 1 ml HCL 26.2 ml Si(OC₂H₅)4 Solⁿ. A + Solⁿ. B 1123K / 2hr **Ref. Sample** \leftarrow 2 weeks for gelation **Powder Hot Pressed** \leftarrow Redcn in H₂ 923 K / $\frac{1}{2}$ hr (Metallic Conduction) Oxdn 573 K / ½ hr **Powder Hot Pressed** 923K / 5 min

Fe - Fe₃O₄ - SiO₂ Gel Nanocomposites

Heat treatment	Median	Geometric
Schedule for	Diameter	Standerd
gel powder before	X	Deviation
hot pressing	(nm)	σ
Reduced at 923 K / ½ hr	5.3	1.4
Reduced at 923 K / ½ hr	4.9	1.4
Oxidized at 823 K / ½ hr X		
Reduced at 923 K / ½ hr Oxidized at 1023 K / ½ hr	4.6	1.4
Reduced at 923 K / ½ hr Oxidized at 1123 K / ½ hr	4.4	1.4
Reduced at 923 K / ½ hr Oxidized at 1123 K / ½ hr	4.2	1.4
Reduced at 923 K / ½ hr Oxidized at 1123 K / ½ hr	4.1	1.4

Fe-Fe₃O₄/SiO₂ Nanocomposites

∇ 4.9 nm
△ 4.6 nm
★ 4.4 nm
₩ 4.2 nm

Das et al J.Appl.Phys. 914573 (2002)

Fe - Fe₃O₄ - SiO₂ Gel Nanocomposites

speci	W	α	R	С	ν _o	ερ
men	(cV)	(A ^{o-1})	(A°)		(s ⁻¹)	
Ref	0.39	0.95	4.7	0.99	1.2x10 ¹³	4.9
2	0.08	0.89	4.7	0.99	1.3x10 ¹³	23.8
3	0.08	0.86	4.8	0.99	1.2x10 ¹³	23.3
4	0.07	0.87	4.9	0.99	1.1x10 ¹³	26.1
5	0.06	0.86	4.8	0.99	1.3x10 ¹³	31.1

Small polaron Hopping

$$\rho = \frac{kTR}{\upsilon_o c^2 c(1-c)} \exp(2\alpha R) \exp(\frac{W}{kT})$$
$$W \approx e^2 / 4\varepsilon_p \gamma_p$$
$$\gamma_p = \frac{1}{2} \left(\frac{\Pi}{6}\right)^{\frac{1}{3}} R$$

COMPOSITION :

10 Na₂O, 34 BaO, 34 TiO₂, 17 B₂O₃, 5 SiO₂ Heat treatment at 843 K and 963 K Powdered samples ION Exchanged at 583 K / 6 Hrs Reduction at 573 K / 5 Min.s

SEM Micrograph of Glass Ceramic

X Ray Diffractogram of Glass Ceramic

Crystalline phases : Na₂B₄O₇ ; BaTiO₃

a) TEM of ION Exchanged and reduced Glass Ceramic b) Electron Diffraction of (a)

Histogram of Silver Particle Size

Table II

Summary of heat treatment schedules for crystallization and median diameter

 \overline{x} and geometric standard deviation σ obtained for different specimens after

ion exchange/reduction treatment

Specimen	Heat Treatment	X	σ
No.	Schedule	(nm)	
1	843K for 2 hours + 963K for 10 min.	3.4	1.5
2	843K for 4 hours + 963K for 10 min.	4.6	1.3
3	843K for 6 hours + 963K for 15 min.	10.1	1.3
4	843K for 2 hours + 963K for 20 min.	13.2	1.4

Reduction in Hydrogen at 573 K / 5 Min.s

Resistivity vs. Relative Humidity Pal et al J.Appl.Phys. 93, 4201 (2003)

Particle Diameter 3.4 nm

Current vs. Time Silver Particle Diameter 10.1 nm Relative Humidity 85 %

Optical micrograph of film with fractally grown Fe-Fe₃O₄ core shell structure

AFM micrograph

TEM of the specimen

TEM of core shell structure

Electron diffraction pattern IRON-IRON OXIDE NANO CORE-SHELL STRUCTURE

Surface resistivity as a function of temperature
▽ Reference Specimen
O 1 hour oxidation
□ 2 hour oxidation
△ 4 hour oxidation

Surface resistivity vs.
relative humidity
✓ Reference Specimen
0 1 hour oxidation
□ 2 hour oxidation
△ 4 hour oxidation

Pal et.al. J.Appl.Phys.97,034311(2005)

GLASS COMPOSITION : 30 Li₂O 12 CaO 3 Al₂O3 55 SiO₂

ION EXCHANGED IN AgNO₃ AT 573 K FOR 11 HRS

ELECTRODEPOSITION AT 600 K, 5 and 10 VOLTS FOR 10 HRS

TEM OF SILVER NANO ARRAYS

TEM OF NANO ARRAYS OF SILVER IN SILICATE GLASS

TEM OF SILICA GEL GLASS WITH COPPER NANO ARRAYS

ELETRODEPOSITION VOLTAGE : 5 VOLTS

GLASS COMPOSITION 30Li₂O 12CaO 3Al₂O₃ 55SiO₂

ELECTRO DEPOSITION VOLTAGE : 5 VOLTS

DIODE LIKE BEHAVIOUR

SCHEMATIC REPRESENTATION OF METAL SEMICONDUCTOR NANO JUNCTION ARRAYS

SYMMETRICAL NON LINEAR V - I

30 LI₂O 12CaO 3AI₂O₃ 55SiO₂

ELECTRODEPOSITION AT 10 VOLTS

Dan et al J.Appl.Phys. 93,4794 (2003)

DATA FITTED TO
$$I = I_0 \left[\exp\left(\frac{eV}{nkT}\right) - 1 \right]$$

COMPOSITION	ELECTRO DEPOSITION VOLTAGE	l _o (Amp)	n
1	5	0.5 X 10 ⁻³	30
1	10	0.2 X 10 ⁻³	60
2	5	0.7 X 10 ⁻⁷	42
2	10	0.07 X 10 ⁻⁷	55

ELECTRODEPOSITION VOLTAGE 5 VOLTS

TEM OF A NANO INTERFACE BETWEEN TWO COPPER PARTICLES

- Silicate glasses can be used as effective templates for nanostructure growth
- Glass nanocomposites show novel properties
- New functionalities can be generated by using a nanocomposite approach in glasses

THANK YOU